Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects

Nadya T. Vinogradova Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Nadya T. Vinogradova in
Current site
Google Scholar
PubMed
Close
,
Rui M. Ponte Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Rui M. Ponte in
Current site
Google Scholar
PubMed
Close
,
Katherine J. Quinn Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Katherine J. Quinn in
Current site
Google Scholar
PubMed
Close
,
Mark E. Tamisiea National Oceanography Centre, Liverpool, United Kingdom

Search for other papers by Mark E. Tamisiea in
Current site
Google Scholar
PubMed
Close
,
Jean-Michel Campin Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Jean-Michel Campin in
Current site
Google Scholar
PubMed
Close
, and
James L. Davis Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by James L. Davis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The oceanic response to surface loading, such as that related to atmospheric pressure, freshwater exchange, and changes in the gravity field, is essential to our understanding of sea level variability. In particular, so-called self-attraction and loading (SAL) effects caused by the redistribution of mass within the land–atmosphere–ocean system can have a measurable impact on sea level. In this study, the nature of SAL-induced variability in sea level is examined in terms of its equilibrium (static) and nonequilibrium (dynamic) components, using a general circulation model that implicitly includes the physics of SAL. The additional SAL forcing is derived by decomposing ocean mass anomalies into spherical harmonics and then applying Love numbers to infer associated crustal displacements and gravitational shifts. This implementation of SAL physics incurs only a relatively small computational cost. Effects of SAL on sea level amount to about 10% of the applied surface loading on average but depend strongly on location. The dynamic component exhibits large-scale basinwide patterns, with considerable contributions from subweekly time scales. Departures from equilibrium decrease toward longer time scales but are not totally negligible in many places. Ocean modeling studies should benefit from using a dynamical implementation of SAL as used here.

Corresponding author address: Nadya Vinogradova, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: nadya@aer.com

Abstract

The oceanic response to surface loading, such as that related to atmospheric pressure, freshwater exchange, and changes in the gravity field, is essential to our understanding of sea level variability. In particular, so-called self-attraction and loading (SAL) effects caused by the redistribution of mass within the land–atmosphere–ocean system can have a measurable impact on sea level. In this study, the nature of SAL-induced variability in sea level is examined in terms of its equilibrium (static) and nonequilibrium (dynamic) components, using a general circulation model that implicitly includes the physics of SAL. The additional SAL forcing is derived by decomposing ocean mass anomalies into spherical harmonics and then applying Love numbers to infer associated crustal displacements and gravitational shifts. This implementation of SAL physics incurs only a relatively small computational cost. Effects of SAL on sea level amount to about 10% of the applied surface loading on average but depend strongly on location. The dynamic component exhibits large-scale basinwide patterns, with considerable contributions from subweekly time scales. Departures from equilibrium decrease toward longer time scales but are not totally negligible in many places. Ocean modeling studies should benefit from using a dynamical implementation of SAL as used here.

Corresponding author address: Nadya Vinogradova, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: nadya@aer.com
Save
  • Accad, Y., and C. L. Pekeris, 1978: Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Philos. Trans. Roy. Soc., A290, 235266, doi:10.1098/rsta.1978.0083.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MITgcm. Proc. ECMWF Seminar Series on Numerical Methods: Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, Reading, United Kingdom, ECMWF, 139149.

  • Arbic, B., S. T. Garner, R. W. Hallberg, and C. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101, doi:10.1016/j.dsr2.2004.09.014.

    • Search Google Scholar
    • Export Citation
  • Blais, J. A. R., and D. A. Provins, 2002: Spherical harmonic analysis and synthesis for global multiresolution applications. J. Geod., 76, 2935, doi:10.1007/s001900100217.

    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of properties in a free surface model. Ocean Modell., 6, 221244, doi:10.1016/S1463-5003(03)00009-X.

    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., J. Marshall, and D. Ferreira, 2008: Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Modell., 24, 114, doi:10.1016/j.ocemod.2008.05.005.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. M. Gregory, N. J. White, S. M. Platten, and J. X. Mitrovica, 2011: Understanding and projecting sea level change. Oceanography, 24, 130143, doi:10.5670/oceanog.2011.33.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Driscoll, J. R., and D. Healy, 1994: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math., 15, 202250, doi:10.1006/aama.1994.1008.

    • Search Google Scholar
    • Export Citation
  • Farrell, W., and J. Clark, 1976: On postglacial sea level. Geophys. J. Int., 46, 647667, doi:10.1111/j.1365-246X.1976.tb01252.x.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., D. Menemenlis, M. Losch, J. Campin, and C. Hill, 2010: On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modell., 33, 145158, doi:10.1016/j.ocemod.2010.02.002.

    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., J. X. Mitrovica, S. M. Griffies, J. Yin, C. C. Hay, and R. J. Stouffer, 2010: The impact of Greenland melt on local sea levels: A partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change, 103, 619625, doi:10.1007/s10584-010-9935-1.

    • Search Google Scholar
    • Export Citation
  • Kuhlmann, J., H. Dobslaw, and M. Thomas, 2011: Improved modeling of sea level patterns by incorporating self-attraction and loading. J. Geophys. Res.,116, C11036, doi:10.1029/2011JC007399.

  • Landerer, F. W., J. H. Jungclaus, and J. Marotzke, 2007: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr., 37, 296312, doi:10.1175/JPO3013.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Losch, M., D. Menemenlis, J. M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33, 129144, doi:10.1016/j.ocemod.2009.12.008.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Milne, G. A., W. R. Gehrels, C. W. Hughes, and M. E. Tamisiea, 2009: Identifying the causes of sea-level change. Nat. Geosci., 2, 471478, doi:10.1038/ngeo544.

    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., M. E. Tamisiea, J. L. Davis, and G. A. Milne, 2001: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature,409, 1026–1029, doi:10.1038/35059054.

  • Mullarney, J. C., A. E. Hay, and A. J. Bowen, 2008: Resonant modulation of the flow in a tidal channel. J. Geophys. Res.,113, C10007, doi:10.1029/2007JC004522.

  • Ponte, R. M., 1993: Variability in a homogeneous global ocean forced by barometric pressure. Dyn. Atmos. Oceans, 18, 209234, doi:10.1016/0377-0265(93)90010-5.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 1999: A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean. J. Geophys. Res., 104, 12891300, doi:10.1029/1998JC900028.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2006: Oceanic response to surface loading effects neglected in volume-conserving models. J. Phys. Oceanogr., 36, 426434, doi:10.1175/JPO2843.1.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and S. V. Vinogradov, 2007: Effects of stratification on the large-scale ocean response to barometric pressure. J. Phys. Oceanogr., 37, 245258, doi:10.1175/JPO3010.1.

    • Search Google Scholar
    • Export Citation
  • Quinn, K. J., and R. M. Ponte, 2011: Estimating high frequency ocean bottom pressure variability. Geophys. Res. Lett.,38, L08611, doi:10.1029/2010GL046537.

  • Quinn, K. J., and R. M. Ponte, 2012: High frequency barotropic ocean variability observed by GRACE and satellite altimetry. Geophys. Res. Lett.,39, L07603, doi:10.1029/2012GL051301.

  • Ray, R. D., 1998: Ocean self-attraction and loading in numerical tidal models. Mar. Geod., 21, 181192, doi:10.1080/01490419809388134.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riva, R. E. M., J. L. Bamber, D. A. Lavalleé, and B. Wouters, 2010: Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys. Res. Lett.,37, L19605, doi:10.1029/2010GL044770.

  • Speer, K., and G. Forget, 2013: Global distribution and formation of mode waters. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Elsevier, 211–226.

  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, doi:10.1146/annurev-marine-121211-172406.

    • Search Google Scholar
    • Export Citation
  • Stepanov, V. N., and C. W. Hughes, 2004: Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation. J. Geophys. Res.,109, C07004, doi:10.1029/2003JC002034.

  • Stocker, T. F., and Coauthors, Eds., 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Tamisiea, M. E., E. Hill, R. M. Ponte, J. L. Davis, I. Velicogna, and N. T. Vinogradova, 2010: Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res.,115, C07004, doi:10.1029/2009JC005687.

  • Vinogradova, N. T., R. M. Ponte, and D. Stammer, 2007: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys. Res. Lett.,34, L03608, doi:10.1029/2006GL028588.

  • Vinogradova, N. T., R. M. Ponte, M. E. Tamisiea, J. L. Davis, and E. M. Hill, 2010: Effects of self-attraction and loading on annual variation of ocean bottom pressure. J. Geophys. Res.,115, C06025, doi:10.1029/2009JC005783.

  • Vinogradova, N. T., R. M. Ponte, M. E. Tamisiea, K. J. Quinn, E. M. Hill, and J. L. Davis, 2011: Self-attraction and loading effects on ocean mass redistribution at monthly and longer time scales. J. Geophys. Res.,116, C08041, doi:10.1029/2011JC007037.

  • Wunsch, C., and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Elsevier, 553–580.

  • Yin, J., S. M. Griffies, and R. J. Stouffer, 2010: Spatial variability of sea-level rise in the 21st century projections. J. Climate, 23, 45854607, doi:10.1175/2010JCLI3533.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 184 12
PDF Downloads 246 110 8