Gulf Stream Dynamics along the Southeastern U.S. Seaboard

Jonathan Gula Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jonathan Gula in
Current site
Google Scholar
PubMed
Close
,
M. Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Gulf Stream strongly interacts with the topography along the southeastern U.S. seaboard, between the Straits of Florida and Cape Hatteras. The dynamics of the Gulf Stream in this region is investigated with a set of realistic, very high-resolution simulations using the Regional Ocean Modeling System (ROMS). The mean path is strongly influenced by the topography and in particular the Charleston Bump. There are significant local pressure anomalies and topographic form stresses exerted by the bump that retard the mean flow and steer the mean current pathway seaward. The topography provides, through bottom pressure torque, the positive input of barotropic vorticity necessary to balance the meridional transport of fluid and close the gyre-scale vorticity balance. The effect of the topography on the development of meanders and eddies is studied by computing energy budgets of the eddies and the mean flow. The baroclinic instability is stabilized by the slope everywhere except past the bump. The flow is barotropically unstable, and kinetic energy is converted from the mean flow to the eddies following the Straits of Florida and at the bump with regions of eddy-to-mean conversion in between. There is eddy growth by Reynolds stress and downstream development of the eddies. Interaction of the flow with the topography acts as an external forcing process to localize these oceanic storm tracks. Associated time-averaged eddy fluxes are essential to maintain and reshape the mean current. The pattern of eddy fluxes is interpreted in terms of eddy life cycle, eddy fluxes being directed downgradient in eddy growth regions and upgradient in eddy decay regions.

Corresponding author address: Jonathan Gula, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: gula@atmos.ucla.edu

Abstract

The Gulf Stream strongly interacts with the topography along the southeastern U.S. seaboard, between the Straits of Florida and Cape Hatteras. The dynamics of the Gulf Stream in this region is investigated with a set of realistic, very high-resolution simulations using the Regional Ocean Modeling System (ROMS). The mean path is strongly influenced by the topography and in particular the Charleston Bump. There are significant local pressure anomalies and topographic form stresses exerted by the bump that retard the mean flow and steer the mean current pathway seaward. The topography provides, through bottom pressure torque, the positive input of barotropic vorticity necessary to balance the meridional transport of fluid and close the gyre-scale vorticity balance. The effect of the topography on the development of meanders and eddies is studied by computing energy budgets of the eddies and the mean flow. The baroclinic instability is stabilized by the slope everywhere except past the bump. The flow is barotropically unstable, and kinetic energy is converted from the mean flow to the eddies following the Straits of Florida and at the bump with regions of eddy-to-mean conversion in between. There is eddy growth by Reynolds stress and downstream development of the eddies. Interaction of the flow with the topography acts as an external forcing process to localize these oceanic storm tracks. Associated time-averaged eddy fluxes are essential to maintain and reshape the mean current. The pattern of eddy fluxes is interpreted in terms of eddy life cycle, eddy fluxes being directed downgradient in eddy growth regions and upgradient in eddy decay regions.

Corresponding author address: Jonathan Gula, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: gula@atmos.ucla.edu
Save
  • Bane, J., Jr., and W. Dewar, 1988: Gulf Stream bimodality and variability downstream of the Charleston Bump. J. Geophys. Res., 93, 66956710, doi:10.1029/JC093iC06p06695.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefried, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, doi:10.1016/0924-7963(94)00034-9.

    • Search Google Scholar
    • Export Citation
  • Beal, L., J. Hummon, E. Williams, O. Brown, W. Baringer, and E. Kearns, 2008: Five years of Florida Current structure and transport from the Royal Caribbean Cruise Ship Explorer of the Seas. J. Geophys. Res., 113, C06001, doi:10.1029/2007JC004154.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blanton, J., L. Atkinson, L. Pietrafesa, and T. Lee, 1981: The intrusion of Gulf Stream water across the continental shelf due to topographically-induced upwelling. Deep-Sea Res., 28, 393405, doi:10.1016/0198-0149(81)90006-6.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J., and B. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Conkright, M., R. Locarnini, H. Garcia, T. O’Brien, T. Boyer, C. Stephens, and J. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics and Figures. National Oceanographic Center Internal Tech. Rep. 17, CD-ROM.

  • Dewar, W., and J. Bane Jr., 1985: Subsurface energetics of the Gulf Stream near the Charleston Bump. J. Phys. Oceanogr., 15, 17711789, doi:10.1175/1520-0485(1985)015<1771:SEOTGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P.-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16 603–16 622, doi:10.1029/2000JC000205.

    • Search Google Scholar
    • Export Citation
  • Glenn, S., and C. Ebbesmeyer, 1994: The structure and propagation of a Gulf Stream frontal eddy along the North Carolina shelf break. J. Geophys. Res., 99, 50295046, doi:10.1029/93JC02786.

    • Search Google Scholar
    • Export Citation
  • Gula, J., and V. Zeitlin, 2014: Instabilities of shallow-water flows with vertical shear in the rotating annulus. Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, T. von Larcher and P. Williams, Eds., Amer. Geophys. Union, 119–138.

  • Gula, J., M. Molemaker, and J. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Hood, C., and J. Bane Jr., 1983: Subsurface energetics of the Gulf Stream cyclonic frontal zone off Onslow Bay, North Carolina. J. Geophys. Res., 88, 46514662, doi:10.1029/JC088iC08p04651.

    • Search Google Scholar
    • Export Citation
  • Hughes, C., 2000: A theoretical reason to expect inviscid western boundary currents in realistic oceans. Ocean Modell., 2, 7383, doi:10.1016/S1463-5003(00)00011-1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C., and B. De Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712886, doi:10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., C. Hughes, and R. Williams, 2006: Topographic control of basin and channel flows: The role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 17861805, doi:10.1175/JPO2936.1.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Leaman, K., E. Johns, and T. Rossby, 1975: The average distribution of volume transport and potential vorticity with temperature at three sections across the Gulf Stream. J. Geophys. Res., 80, 19751978, doi:10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and L. Atkinson, 1983: Low-frequency current and temperature variability from Gulf Stream frontal eddies and atmospheric forcing along the southeast U.S. outer continental shelf. J. Geophys. Res., 88, 45414567, doi:10.1029/JC088iC08p04541.

    • Search Google Scholar
    • Export Citation
  • Lee, T., J. Yoder, and L. Atkinson, 1991: Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. J. Geophys. Res., 96, 22 19122 205, doi:10.1029/91JC02450.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. Shchepetkin, M. Molemaker, F. Colas, and J. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, doi:10.1016/j.ocemod.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Lin, G., and J. Atkinson, 2000: A mechanism for offshore transport across the Gulf Stream. J. Phys. Oceanogr., 30, 225232, doi:10.1175/1520-0485(2000)030<0225:AMFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Marchesiello, P., J. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Mason, E., M. Molemaker, A. Shchepetkin, F. Colas, J. McWilliams, and P. Sangra, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, doi:10.1016/j.ocemod.2010.05.007.

    • Search Google Scholar
    • Export Citation
  • McClain, C., and L. Atkinson, 1985: A note on the Charleston Gyre. J. Geophys. Res., 90, 11 85711 861, doi:10.1029/JC090iC06p11857.

  • McClain, C., L. Pietrafesa, and J. Yoder, 1984: Observations of Gulf Stream-induced and wind-driven upwelling in the Georgia Bight using ocean color and infrared imagery. J. Geophys. Res., 89, 37053723, doi:10.1029/JC089iC03p03705.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 5–15, doi:10.1029/177GM03.

  • McWilliams, J., E. Huckle, and A. Shchepetkin, 2009: Buoyancy effects in a stratified Ekman layer. J. Phys. Oceanogr., 39, 25812599, doi:10.1175/2009JPO4130.1.

    • Search Google Scholar
    • Export Citation
  • Miller, J., and T. Lee, 1995: Gulf Stream meanders in the South Atlantic Bight: 1. Scaling and energetics. J. Geophys. Res., 100, 66876704, doi:10.1029/94JC02542.

    • Search Google Scholar
    • Export Citation
  • Molemaker, J., J. McWilliams, and W. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., doi:10.1175/JPO-D-13-0225.1, in press.

    • Search Google Scholar
    • Export Citation
  • Oey, L., 1988: A model of Gulf Stream frontal instabilities, meanders and eddies along the continental slope. J. Phys. Oceanogr., 18, 211229, doi:10.1175/1520-0485(1988)018<0211:AMOGSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olson, D., O. Brown, and S. Emmerson, 1983: Gulf Stream frontal statistics from Florida Straits to Cape Hatteras derived from satellite and historical data. J. Geophys. Res., 88, 45694577, doi:10.1029/JC088iC08p04569.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1969: The influence of bottom topography on the stability of jets in a baroclinic fluid. J. Atmos. Sci., 26, 12161233, doi:10.1175/1520-0469(1969)026<1216:TIOBTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orr, W., 1907: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. Roy. Ir. Acad., 27, 69138. [Available online at www.jstor.org/stable/20490590.]

    • Search Google Scholar
    • Export Citation
  • Pennel, R., A. Stegner, and K. Beranger, 2012: Shelf impact on buoyant coastal current instabilities. J. Phys. Oceanogr., 42, 3961, doi:10.1175/JPO-D-11-016.1.

    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J. McWilliams, 2006: Application of the ROMS embedding procedure for the central California upwelling system. Ocean Modell., 12, 157187, doi:10.1016/j.ocemod.2005.05.002.

    • Search Google Scholar
    • Export Citation
  • Porta Mana, P., and L. Zanna, 2014: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modell., 79, 120, doi:10.1016/j.ocemod.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Poulin, F., A. Stegner, M. Hernández-Arencibia, A. Marrero-Díaz, and P. Sangrà, 2014: Steep shelf stabilization of the coastal Bransfield Current: Linear stability analysis. J. Phys. Oceanogr., 44, 714732, doi:10.1175/JPO-D-13-0158.1.

    • Search Google Scholar
    • Export Citation
  • Rio, M., S. Guinehut, and G. Larnicol, 2011: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res., 116, C07018, doi:10.1029/2010JC006505.

    • Search Google Scholar
    • Export Citation
  • Risien, C., and D. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R., and J. Pedlosky, 1990: Local baroclinic instability of flow over variable topography. J. Fluid Mech., 221, 411436, doi:10.1017/S0022112090003615.

    • Search Google Scholar
    • Export Citation
  • Savidge, D., and J. Bane Jr., 1999: Cyclogenesis in the deep ocean beneath the Gulf Stream: 2. Dynamics. J. Geophys. Res., 104, 18 12718 141, doi:10.1029/1999JC900131.

    • Search Google Scholar
    • Export Citation
  • Savidge, D., and J. Bane Jr., 2004: Gulf Stream meander propagation past Cape Hatteras. J. Phys. Oceanogr., 34, 2073–2085, doi:10.1175/1520-0485(2004)034<2073:GSMPPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2008: Computational kernel algorithms for finescale, multiprocess, longtime oceanic simulations. Handb. Numer. Anal., 14, 121183, doi:10.1016/S1570-8659(08)01202-0.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2011: Accurate Boussinesq modeling with a practical, “stiffened” equation of state. Ocean Modell., 38, 4170, doi:10.1016/j.ocemod.2011.01.010.

    • Search Google Scholar
    • Export Citation
  • Silva, A. D., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 74 pp.

  • Smith, W., and D. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Wright, 1998: A general pressure gradient formulation for ocean models. Part II: Energy, momentum, and bottom torque consistency. Mon. Wea. Rev., 126, 32313247, doi:10.1175/1520-0493(1998)126<3231:AGPGFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., J. Taylor, R. Ferrari, and T. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res., 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • von Arx, W., D. Bumpus, and W. Richardson, 1955: On the fine-structure of the Gulf Stream front. Deep-Sea Res., 3, 4665, doi:10.1016/0146-6313(55)90035-6.

    • Search Google Scholar
    • Export Citation
  • Webster, F., 1961: A description of Gulf Stream meanders off Onslow Bay. Deep-Sea Res., 8, 130143, doi:10.1016/0146-6313(61)90005-3.

  • Williams, R., C. Wilson, and C. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, C., and R. Williams, 2006: On divergent barotropic and inertial instability in zonal-mean flow profiles. J. Phys. Oceanogr., 36, 189201, doi:10.1175/JPO2841.1.

    • Search Google Scholar
    • Export Citation
  • Xie, L., X. Liu, and L. Pietrafesa, 2007: Effect of bathymetric curvature on Gulf Stream instability in the vicinity if the Charleston Bump. J. Phys. Oceanogr., 37, 452475, doi:10.1175/JPO2995.1.

    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Mellor, 1993: Instability of the Gulf Stream Front in the South Atlantic Bight. J. Phys. Oceanogr., 23, 23262350, doi:10.1175/1520-0485(1993)023<2326:IOTGSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoder, J., L. Atkinson, S. Bishop, J. Blanton, T. Lee, and L. Pietrafesa, 1985: Phytoplankton dynamics within Gulf Stream intrusions on the southeastern United States continental shelf during summer 1981. Cont. Shelf Res., 4, 611635, doi:10.1016/0278-4343(85)90033-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080, doi:10.1175/JPO3102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1768 543 69
PDF Downloads 1452 429 20