Properties and Origins of the Anisotropic Eddy-Induced Transport in the North Atlantic

Igor Kamenkovich Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
,
Irina I. Rypina Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Irina I. Rypina in
Current site
Google Scholar
PubMed
Close
, and
Pavel Berloff Department of Mathematics and Grantham Institute for Climate Change, Imperial College London, London, United Kingdom

Search for other papers by Pavel Berloff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines anisotropic transport properties of the eddying North Atlantic flow, using an idealized model of the double-gyre oceanic circulation and altimetry-derived velocities. The material transport by the time-dependent flow (quantified by the eddy diffusivity tensor) varies geographically and is anisotropic, that is, it has a well-defined direction of the maximum transport. One component of the time-dependent flow, zonally elongated large-scale transients, is particularly important for the anisotropy, as it corresponds to primarily zonal material transport and long correlation time scales. The importance of these large-scale zonal transients in the material distribution is further confirmed with simulations of idealized color dye tracers, which has implications for parameterizations of the eddy transport in non-eddy-resolving models.

Corresponding author address: Igor Kamenkovich, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149. E-mail: ikamenkovich@rsmas.miami.edu

Abstract

This study examines anisotropic transport properties of the eddying North Atlantic flow, using an idealized model of the double-gyre oceanic circulation and altimetry-derived velocities. The material transport by the time-dependent flow (quantified by the eddy diffusivity tensor) varies geographically and is anisotropic, that is, it has a well-defined direction of the maximum transport. One component of the time-dependent flow, zonally elongated large-scale transients, is particularly important for the anisotropy, as it corresponds to primarily zonal material transport and long correlation time scales. The importance of these large-scale zonal transients in the material distribution is further confirmed with simulations of idealized color dye tracers, which has implications for parameterizations of the eddy transport in non-eddy-resolving models.

Corresponding author address: Igor Kamenkovich, 4600 Rickenbacker Causeway, University of Miami, Miami, FL 33149. E-mail: ikamenkovich@rsmas.miami.edu
Save
  • Arbic, B., M. Mueller, J. Richman, J. Shriver, A. Morten, R. Scott, G. Serazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, doi:10.1175/JPO-D-13-054.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2013a: On spectral analysis of mesoscale eddies. Part I: Linear analysis. J. Phys. Oceanogr., 43, 25052527, doi:10.1175/JPO-D-12-0232.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2013b: On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis. J. Phys. Oceanogr., 43, 25282544, doi:10.1175/JPO-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., J. C. McWilliams, and A. Bracco, 2002: Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32, 764796, doi:10.1175/1520-0485(2002)032<0764:MTIOGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism for the formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, doi:10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Booth, J., and I. Kamenkovich, 2008: Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model. J. Geophys. Res., 113, C05021, doi:10.1029/2007JC004510.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., P. B. Rhines, and T. Rossby, 1975: Statistical observations of the trajectories of neutrally buoyant floats in the North Atlantic. J. Mar. Res., 33, 383404.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, doi:10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., D. A. Poet, and E. F. Shuckburgh, 2007: Transport and mixing in kinematic and dynamically consistent flows. J. Atmos. Sci., 64, 36403651, doi:10.1175/JAS4030.1.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34, 24282443, doi:10.1175/JPO2639.1.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., A. Kaplan, E. Curchitser, , and N. Maximenko, 2007: The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res., 112, C09005, doi:10.1029/2007JC004105.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175, doi:10.1175/2009JPO4239.1.

    • Search Google Scholar
    • Export Citation
  • Karabasov, S. A., P. S. Berloff, and V. M. Goloviznin, 2009: CABARET in the ocean gyres. Ocean Modell., 30, 155168, doi:10.1016/j.ocemod.2009.06.009.

    • Search Google Scholar
    • Export Citation
  • Killworth, P., 1997: On the parameterization of the eddy transfer. Part I. Theory. J. Mar. Res.,55, 1171–1197, doi:10.1357/0022240973224102.

  • LaCasce, J. H., 2000: Floats and f/H. J. Mar. Res., 58, 6195, doi:10.1357/002224000321511205.

  • LaCasce, J. H., 2008: Lagrangian statistics from oceanic and atmospheric observations. Transport and Mixing in Geophysical Flows, J. B. Weiss and A. Provezale, Eds., Springer, 165228.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and A. Bower, 2000: Relative dispersion in the subsurface North Atlantic. J. Mar. Res., 58, 863894, doi:10.1357/002224000763485737.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Rypina, I. I., L. J. Pratt, and M. S. Lozier, 2011: Near-surface transport pathways in the North Atlantic Ocean: Looking for throughput from the subtropical to subpolar gyre. J. Phys. Oceanogr., 41, 911925, doi:10.1175/2011JPO4498.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, P. Berloff, and L. Pratt, 2012: Eddy-induced particle dispersion in the near-surface North Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Search Google Scholar
    • Export Citation
  • Sallee, J.-B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Samelson, R., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431444, doi:10.1175/1520-0485(1992)022<0431:FEAAMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2005: Tracer transport along and across coherent jets in two-dimensional turbulent flow. J. Fluid Mech., 544, 133142, doi:10.1017/S0022112005006750.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., P. L. Richardson, and J. Price, 1993: Advection and eddy mixing in the Mediterranean salt tongue. J. Mar. Res., 51, 797818, doi:10.1357/0022240933223882.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196211, doi:10.1112/plms/s2-20.1.196.

  • Taylor, G. I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, A219, 186203, doi:10.1098/rspa.1953.0139.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Veneziani, M., A. Griffa, A. M. Reynolds, Z. D. Garraffo, and E. P. Chassignet, 2005: Parameterizations of Lagrangian spin statistics and particle dispersion in the presence of coherent vortices. J. Mar. Res., 63, 10571083, doi:10.1357/002224005775247571.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, , and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the oceans. J. Phys. Oceanogr., 12, 515527, doi:10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 135 8
PDF Downloads 197 59 2