Isohaline Salinity Budget of the North Atlantic Salinity Maximum

Frank Bryan Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Frank Bryan in
Current site
Google Scholar
PubMed
Close
and
Scott Bachman Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Scott Bachman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the salinity budget of the North Atlantic subtropical salinity maximum region for control volumes bounded by isohaline surfaces is analyzed. The authors provide closed budgets based on output from a high-resolution numerical simulation and partial budgets based on analyses of observational climatologies of hydrography and surface fluxes. With this choice of control volume, advection is eliminated from the instantaneous volume-integrated salt budget, and time-mean advection is eliminated from the budget evaluated from time-averaged data. In this way, the role of irreversible mixing processes in the maintenance and variability of the salinity maximum are more readily revealed. By carrying out the analysis with both near-instantaneous and time-averaged model output, the role of mesoscale eddies in stirring and mixing for this water mass is determined. This study finds that the small-scale mixing acting on enhanced gradients generated by the mesoscale eddies is approximately equal to that acting on the large-scale gradients estimated from climatological-mean conditions. The isohaline salinity budget can be related to water mass transformation rates associated with surface forcing and mixing processes in a straightforward manner. The authors find that the surface net evaporation in the North Atlantic salinity maximum region accounts for a transformation of 7 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) of water across the 37-psu isohaline outcrop into the salinity maximum in the simulation, whereas the estimate based on climatological observations is 9 to 10 Sv.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Frank Bryan, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: bryan@ucar.edu

Abstract

In this study, the salinity budget of the North Atlantic subtropical salinity maximum region for control volumes bounded by isohaline surfaces is analyzed. The authors provide closed budgets based on output from a high-resolution numerical simulation and partial budgets based on analyses of observational climatologies of hydrography and surface fluxes. With this choice of control volume, advection is eliminated from the instantaneous volume-integrated salt budget, and time-mean advection is eliminated from the budget evaluated from time-averaged data. In this way, the role of irreversible mixing processes in the maintenance and variability of the salinity maximum are more readily revealed. By carrying out the analysis with both near-instantaneous and time-averaged model output, the role of mesoscale eddies in stirring and mixing for this water mass is determined. This study finds that the small-scale mixing acting on enhanced gradients generated by the mesoscale eddies is approximately equal to that acting on the large-scale gradients estimated from climatological-mean conditions. The isohaline salinity budget can be related to water mass transformation rates associated with surface forcing and mixing processes in a straightforward manner. The authors find that the surface net evaporation in the North Atlantic salinity maximum region accounts for a transformation of 7 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) of water across the 37-psu isohaline outcrop into the salinity maximum in the simulation, whereas the estimate based on climatological observations is 9 to 10 Sv.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Frank Bryan, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: bryan@ucar.edu
Save
  • Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315, doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., and Coauthors, 2009: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Busecke, J., A. L. Gordon, Z. Li, F. M. Bingham, and J. Font, 2014: Subtropical surface layer salinity budget and the role of mesoscale turbulence. J. Geophys. Res. Oceans, 119, 4124–4140, doi:10.1002/2013JC009715.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and S.-K. Lee, 2005: The heat balance of the Western Hemisphere warm pool. J. Climate, 18, 26622681, doi:10.1175/JCLI3427.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and D. Menenmenlis, 2008: Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 319–337, doi:10.1029/177GM19.

  • Gordon, A. L., and C. F. Giulivi, 2014: Ocean eddy freshwater flux convergence into the North Atlantic subtropics. J. Geophys. Res. Oceans, 119, 3327–3335, doi:10.1002/2013JC009596.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE Global Hydrographic Climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35, 9 pp.[Available online at www.bsh.de/de/Produkte/Buecher/Berichte_/Bericht35/Bericht1.pdf.]

  • Grodsky, S. A., J. A. Carton, and F. O. Bryan, 2014: A curious local surface salinity maximum in the northwestern tropical Atlantic. J. Geophys. Res. Oceans, 119, 484495, doi:10.1002/2013JC009450.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrologic cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation analysis. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE,98,666687, doi:10.1109/JPROC.2010.2043032.

  • Lagerloef, G., and Coauthors, 2008: The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21, 6881, doi:10.5670/oceanog.2008.68.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. C. Yeager, 2004: Diurnal to decadal forcing for ocean and sea ice models: The data sets and climatologies. National Center for Atmospheric Research Tech. Rep. TN-460+STR, 105 pp. [Available online at http://opensky.library.ucar.edu/collections/TECH-NOTE-000-000-000-601.]

  • Large, W. G., and S. C. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13, 18091813, doi:10.1175/1520-0442(2000)013<1809:L>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, U.S. Department of Commerce, 173 pp.

  • MacCready, P., 2011: Calculating estuarine exchange flow using isohaline coordinates. J. Phys. Oceanogr., 41, 11161124, doi:10.1175/2011JPO4517.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., G. Danabasoglu, and P. R. Gent, 1996: Tracer budgets in the warm water sphere. Tellus, 48A, 179192, doi:10.1034/j.1600-0870.1996.00010.x.

    • Search Google Scholar
    • Export Citation
  • Murray, R., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, doi:10.1006/jcph.1996.0136.

    • Search Google Scholar
    • Export Citation
  • Niiler, P., and J. Stevenson, 1982: The heat budget of tropical ocean warm-water pools. J. Mar. Res., 40, 465480.

  • O’Connor, B. M., R. A. Fine, and D. B. Olson, 2005: A global comparison of subtropical underwater formation rates. Deep-Sea Res. I, 52, 15691590, doi:10.1016/j.dsr.2005.01.011.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and I. Fukumori, 2011: What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett., 38, L07602, doi:10.1029/2011GL046757.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and I. Fukumori, 2013: Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. J. Geophys. Res. Oceans, 118, 19821994, doi:10.1002/jgrc.20152.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., E. Kestenare, C. Frankignoul, and T. Delcroix, 2007: Surface salinity in the Atlantic Ocean (30°S–50°N). Prog. Oceanogr., 73, 311340, doi:10.1016/j.pocean.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving models? J. Phys. Oceanogr., 28, 20502063, doi:10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, doi:10.1002/jgrc.20122.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and U. Bhatt, 2000: A dissipation integral with application to ocean diffusivities and structure. J. Phys. Oceanogr., 30, 11581171, doi:10.1175/1520-0485(2000)030<1158:ADIWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 140 pp. [Available online at www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.]

  • Song, X., and L. Yu, 2013: How much net surface heat flux should go into the western Pacific warm pool? J. Geophys. Res. Oceans, 118, 35693585, doi:10.1002/jgrc.20246.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., H.-M. Zhang, and M. J. Caruso, 2004: Time-dependent internal energy budgets of the tropical warm water pools. J. Climate, 17, 13981410, doi:10.1175/1520-0442(2004)017<1398:TIEBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., 2000: Volume and mass transport across isosurfaces of a balanced fluid property. J. Phys. Oceanogr., 30, 14781485, doi:10.1175/1520-0485(2000)030<1478:VAMTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29, 128136, doi:10.1111/j.2153-3490.1977.tb00716.x.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. Weller, 2007: Objectively analyzed air–sea fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 127 11
PDF Downloads 326 83 7