• Barnier, B., and et al. , 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 12, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and et al. , 2009: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, doi:10.1007/s10236-006-0082-1.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , A. Dispert, , M. Visbeck, , S. R. Rintoul, , and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., , B. Barnier, , T. Penduff, , and A.-M. Treguier, 2010: An ERA-40 based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., , J. Le Sommer, , J. D. Zika, , M. Gehlen, , J. C. Orr, , P. Mathiot, , and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 6958–6974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , T. L. Delworth, , A. J. Rosati, , S. M. Griffies, , and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, doi:10.1175/2010JPO4353.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., , D. H. Bromwich, , and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn.,36, 1555–1576, doi:10.1007/s00382-010-0905-0.

  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , W. G. Large, , and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106, 26932712, doi:10.1029/2000JC900036.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gnanadesikan, A., , and R. W. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr.,30, 2013–2034, doi:10.1175/1520-0485(2000)030<2013:OTROTC>2.0.CO;2.

  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

  • Griffies, S. M., and et al. , 2009: Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, doi:10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, doi:10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modelling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322251, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., , M. P. Meredith, , J. R. Blundell, , and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, doi:10.1175/2007JCLI1925.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , M. P. Meredith, , and K. J. Heywood, 1999: Wind-driven transport fluctuations through Drake Passage: A southern mode. J. Phys. Oceanogr., 29, 19711992, doi:10.1175/1520-0485(1999)029<1971:WDTFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, D. C., , T. Ito, , and N. S. Lovenduski, 2011: The transient response of the Southern Ocean pycnocline to changing atmospheric winds. Geophys. Res. Lett.,38, L15604, doi:10.1029/2011GL048145.

  • Kallberg, P., , A. Simmons, , S. Uppala, , and M. Fuentes, 2004: The ERA-40 archive. ERA-40 Project Rep. Series 17, 35 pp. [Available online at http://mms.dkrz.de/pdf/klimadaten/projects/era40/e40Archive.pdf.]

  • Kang, D., , and O. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, doi:10.1175/2010JPO4497.1.

    • Search Google Scholar
    • Export Citation
  • Langlais, C., , S. Rintoul, , and A. Schiller, 2011: Variability and mesoscale activity of the southern ocean fronts: Identification of a circumpolar coordinate system. Ocean Modell., 39, 7996, doi:10.1016/j.ocemod.2011.04.010.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., , and D. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation de l’Institut Pierre-Simon Laplace 27, 217 pp.

  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , P. L. Woodworth, , C. W. Hughes, , and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the southern annular mode. Geophys. Res. Lett., 31, L21305, doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , A. C. N. Garabato, , A. M. Hogg, , and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110, doi:10.1175/2011JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., , and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, doi:10.1175/JPO-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., , M. L. Ward, , A. M. Hogg, , and S. Pasquet, 2010: Eddy response to Southern Ocean climate modes. J. Geophys. Res., 115, C10030, doi:10.1029/2009JC005894.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T., , R. Matear, , M. Chamberlain, , J. Risbey, , B. Sloyan, , and I. Horenko, 2013: Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states. Ocean Modell., 69, 121, doi:10.1016/j.ocemod.2013.04.009.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., , and D. A. Griffin, 2011: The cold-core eddy and strong upwelling off the coast of New South Wales in early 2007. Deep-Sea Res. II, 58, 574591, doi:10.1016/j.dsr2.2010.06.006.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., , G. B. Brassington, , D. A. Griffin, , and A. Schiller, 2008: The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modell., 21, 4670, doi:10.1016/j.ocemod.2007.11.002.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and et al. , 2013: Evaluation of a near-global eddy-resolving model. Geosci. Model Dev., 6, 591615, doi:10.5194/gmd-6-591-2013.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , and M. Visbeck, 2005: A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr., 35, 11901205, doi:10.1175/JPO2750.1.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , D. Borowski, , C. Volker, , and J.-O. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, doi:10.1017/S0954102004002251.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., , J. Le Sommer, , B. Barnier, , A.-M. Treguier, , J.-M. Molines, , and G. Madec, 2007: Influence of numerical schemes on current-topography interactions in 1/4 global ocean simulations. Ocean Sci., 3, 509524, doi:10.5194/os-3-509-2007.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., , M. Juza, , L. Brodeau, , G. C. Smith, , B. Barnier, , J.-M. Molines, , A.-M. Treguier, , and G. Madec, 2010: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269284, doi:10.5194/os-6-269-2010.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., , and A. C. Naveira Garabato, 2013: Dynamics of the Southern Ocean. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 471–492.

  • Rintoul, S. R., , C. Hughes, , and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 271–302.

  • Saenko, O. A., 2007: Projected strengthening of the Southern Ocean winds: Some implications for the deep ocean circulation. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 365–382.

  • Saenko, O. A., , J. C. Fyfe, , and M. H. England, 2005: On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Climate Dyn., 25, 415426, doi:10.1007/s00382-005-0032-5.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., , K. Speer, , and R. Morrow, 2008: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., , P. R. Oke, , G. B. Brassington, , M. Entel, , R. Fiedler, , D. A. Griffin, , and J. V. Mansbridge, 2008: Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Prog. Oceanogr., 76, 334365, doi:10.1016/j.pocean.2008.01.003.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., , Y. Okumura, , and C. Deser, 2012: Observed Antarctic interannual climate variability and tropical linkages. J. Climate, 25, 40484066, doi:10.1175/JCLI-D-11-00273.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , N. P. Gillett, , D. P. Stevens, , G. J. Marshall, , and H. K. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Climate, 22, 806818, doi:10.1175/2008JCLI2416.1.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , and M. H. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20, 36773692, doi:10.1175/JCLI4200.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., , and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy resolving general circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951, doi:10.1002/qj.49712354008.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782, doi:10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tansley, C. E., , and D. P. Marshall, 2001: On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr., 31, 32583273, doi:10.1175/1520-0485(2001)031<3258:OTDOWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , M. H. England, , S. R. Rintoul, , G. Madec, , J. Le Sommer, , and J.-M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci., 3, 491507, doi:10.5194/os-3-491-2007.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , J. Le Sommer, , J. M. Molines, , and B. de Cuevas, 2010: Response of the Southern Ocean to the southern annular mode: Interannual variability and multidecadal trend. J. Phys. Oceanogr., 40, 16591668, doi:10.1175/2010JPO4364.1.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., , and B. A. de Cuevas, 2007: On the fast response of the Southern Ocean to changes in the zonal wind. Ocean Sci., 3, 417427, doi:10.5194/os-3-417-2007.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., and et al. , 2013a: Vertical eddy fluxes in the Southern Ocean. J. Phys. Oceanogr., 43, 941955, doi:10.1175/JPO-D-12-0178.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., , J. Le Sommer, , C. O. Dufour, , A. Naveira-Garabato, , and A. Blaker, 2013b: Acceleration of the Antarctic Circumpolar Current by wind stress along the coast of Antarctica. J. Phys. Oceanogr., 43, 27722784, doi:10.1175/JPO-D-13-091.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 184 17
PDF Downloads 184 184 23

Sensitivity of Antarctic Circumpolar Current Transport and Eddy Activity to Wind Patterns in the Southern Ocean

View More View Less
  • 1 Oceans and Atmosphere Flagship, Centre for Australian Weather and Climate Research, CSIRO, Hobart, Tasmania, Australia
  • | 2 Oceans and Atmosphere Flagship, Centre for Australian Weather and Climate Research, CSIRO, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
  • | 3 University of Southampton, National Oceanography Centre, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

The Southern Hemisphere westerly winds have intensified in recent decades associated with a positive trend in the southern annular mode (SAM). However, the response of the Antarctic Circumpolar Current (ACC) transport and eddy field to wind forcing remains a topic of debate. This study uses global eddy-permitting ocean circulation models driven with both idealized and realistic wind forcing to explore the response to interannual wind strengthening. The response of the barotropic and baroclinic transports and eddy field of the ACC is found to depend on the spatial pattern of the changes in wind forcing. In isolation, an enhancement of the westerlies over the ACC belt leads to an increase of both barotropic and baroclinic transport within the ACC envelope, with lagged enhancement of the eddy kinetic energy (EKE). In contrast, an increase in wind forcing near Antarctica drives a largely barotropic change in transport along closed f/H contours (“free mode”), with little change in eddy activity. Under realistic forcing, the interplay of the SAM and the El Niño–Southern Oscillation (ENSO) influences the spatial distribution of the wind anomalies, in particular the partition between changes in the wind stress over the ACC and along f/H contours. This study finds that the occurrence of a negative or positive ENSO during a positive SAM can cancel or double the wind anomalies near Antarctica, altering the response of the ACC and its eddy field. While a negative ENSO and positive SAM favors an increase in EKE, a positive ENSO and positive SAM lead to barotropic transport changes and no eddy response.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-14-0053.s1.

Corresponding author address: Clothilde E. Langlais, Centre for Australian Weather and Climate Research, CSIRO, Oceans and Atmosphere Flagship, Castray Esplanade, Hobart, TAS, 7000, Australia. E-mail: clothilde.langlais@gmail.com

Abstract

The Southern Hemisphere westerly winds have intensified in recent decades associated with a positive trend in the southern annular mode (SAM). However, the response of the Antarctic Circumpolar Current (ACC) transport and eddy field to wind forcing remains a topic of debate. This study uses global eddy-permitting ocean circulation models driven with both idealized and realistic wind forcing to explore the response to interannual wind strengthening. The response of the barotropic and baroclinic transports and eddy field of the ACC is found to depend on the spatial pattern of the changes in wind forcing. In isolation, an enhancement of the westerlies over the ACC belt leads to an increase of both barotropic and baroclinic transport within the ACC envelope, with lagged enhancement of the eddy kinetic energy (EKE). In contrast, an increase in wind forcing near Antarctica drives a largely barotropic change in transport along closed f/H contours (“free mode”), with little change in eddy activity. Under realistic forcing, the interplay of the SAM and the El Niño–Southern Oscillation (ENSO) influences the spatial distribution of the wind anomalies, in particular the partition between changes in the wind stress over the ACC and along f/H contours. This study finds that the occurrence of a negative or positive ENSO during a positive SAM can cancel or double the wind anomalies near Antarctica, altering the response of the ACC and its eddy field. While a negative ENSO and positive SAM favors an increase in EKE, a positive ENSO and positive SAM lead to barotropic transport changes and no eddy response.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-14-0053.s1.

Corresponding author address: Clothilde E. Langlais, Centre for Australian Weather and Climate Research, CSIRO, Oceans and Atmosphere Flagship, Castray Esplanade, Hobart, TAS, 7000, Australia. E-mail: clothilde.langlais@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 96.40 KB)
Save