• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and M. C. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16 94716 968, doi:10.1029/2000JC000370.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , J. A. MacKinnon, , Z. Zhao, , R. Pinkel, , J. Klymak, , and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett.,34, L24601, doi:10.1029/2007GL031566.

  • Alford, M. H., , M. C. Gregg, , V. Zervakis, , and H. Kontoyiannis, 2012: Internal wave measurements on the Cycladic Plateau of the Aegean Sea. J. Geophys. Res.,117, C01015, doi:10.1029/2011JC007488.

  • Badin, G., , R. G. Williams, , Z. Jing, , and L. Wu, 2013: Water mass transformations in the Southern Ocean diagnosed from observations: Contrasting effects of air–sea fluxes and diapycnal mixing. J. Phys. Oceanogr., 43, 14721484, doi:10.1175/JPO-D-12-0216.1.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., , and W. R. Young, 1999: Radiative damping of near-inertial oscillations in the mixed layer. J. Mar. Res., 57, 561584, doi:10.1357/002224099321549594.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., , and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 36753696, doi:10.1029/95JC02750.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bray, N. A., , and N. P. Fofonoff, 1981: Available potential-energy for mode eddies. J. Phys. Oceanogr., 11, 3047, doi:10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general-circulation models. J. Phys. Oceanogr., 17, 970985, doi:10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., , and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., , and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Search Google Scholar
    • Export Citation
  • Damerell, G. M., , K. J. Heywood, , D. P. Stevens, , and A. C. N. Garabato, 2012: Temporal variability of diapycnal mixing in shag rocks passage. J. Phys. Oceanogr., 42, 370385, doi:10.1175/2011JPO4573.1.

    • Search Google Scholar
    • Export Citation
  • Damerell, G. M., , K. J. Heywood, , and D. P. Stevens, 2013: Direct observations of the Antarctic Circumpolar Current transport on the northern flank of the Kerguelen Plateau. J. Geophys. Res. Oceans, 118, 13331348, doi:10.1002/jgrc.20067.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: Upper ocean temperature structure, inertial currents, and Richardson number observed during strong meteorological forcing. J. Phys. Oceanogr., 15, 943962, doi:10.1175/1520-0485(1985)015<0943:UOTSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., , and R. C. Lien, 2000: The wave–turbulence transition for stratified flows. J. Phys. Oceanogr., 30, 16691678, doi:10.1175/1520-0485(2000)030<1669:TWTTFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deacon, G. E. R., 1937: The Hydrology of the Southern Ocean. Discovery Rep. Series, Vol. 15, Cambridge University Press, 124 pp.

  • Egbert, G. D., , and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and S. Y. Erofeeva, 2002: Efficient inverse modelling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , A. F. Bennett, , and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, doi:10.1029/94JC01894.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., , R. Lumpkin, , and G. Prieto, 2010: Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res., 115, C09010, doi:10.1029/2009JC005679.

    • Search Google Scholar
    • Export Citation
  • Fer, I., , P. Nandi, , W. S. Holbrook, , R. W. Schmitt, , and P. Paramo, 2010: Seismic imaging of a thermohaline staircase in the western tropical North Atlantic. Ocean Sci., 6, 621631, doi:10.5194/os-6-621-2010.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: What goes down must come up. Nature, 513, 179180, doi:10.1038/513179a.

  • Garrett, C., , and W. Munk, 1972: Oceanic mixing by breaking internal waves. Deep-Sea Res. Oceanogr. Abstr., 19, 823832, doi:10.1016/0011-7471(72)90001-0.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, doi:10.1029/JB093iB11p13589.

    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1972: Rotary-component method for analyzing meteorological and oceanographic vector time series. Deep-Sea Res. Oceanogr. Abstr., 19, 833846, doi:10.1016/0011-7471(72)90002-2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 52495286, doi:10.1029/JC092iC05p05249.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., , T. B. Sanford, , and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Harrison, M., , and R. Hallberg, 2008: Pacific subtropical cell response to reduced equatorial dissipation. J. Phys. Oceanogr.,38, 1894–1912, doi:10.1175/2008JPO3708.1.

  • Henyey, F. S., , J. Wright, , and S. M. Flatte, 1986: Energy and action flow through the internal wave field: An Eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the thermocline circulation. J. Phys. Oceanogr., 29, 727746, doi:10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., , and L. Wu, 2010: Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific stirred by wind stress. Geophys. Res. Lett., 37, L23604, doi:10.1029/2010GL045418.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., , and L. Wu, 2013: Low-frequency modulation of turbulent diapycnal mixing by anticyclonic eddies inferred from the HOT time series. J. Phys. Oceanogr., 43, 824835, doi:10.1175/JPO-D-11-0150.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave-propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 23502352, doi:10.1175/JPO3092.1.

    • Search Google Scholar
    • Export Citation
  • Langlais, C., , S. Rintoul, , and A. Schiller, 2011: Variability and mesoscale activity of the Southern Ocean fronts: Identification of a circumpolar coordinate system. Ocean Modell.,39, 79–96, doi:10.1016/j.ocemod.2011.04.010.

  • Leaman, K. D., , and T. B. Sanford, 1975: Vertical energy propagation of internal waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, doi:10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, doi:10.1029/98JC01738.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , E. T. Montgomery, , K. L. Polzin, , L. C. St Laurent, , R. W. Schmitt, , and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., , and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, doi:10.1029/97JC03200.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lvov, Y., , K. Polzin, , and E. Tabak, 2004: Energy spectra of the ocean’s internal wave field: Theory and observations. Phys. Rev. Lett.,92, 128501, doi:10.1103/PhysRevLett.92.128501.

  • MacKinnon, J. A., , M. H. Alford, , R. Pinkel, , J. M. Klymak, , and Z. Zhao, 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., , K. L. Polzin, , M. S. McCartney, , R. C. Millard, , and D. E. West-Mack, 2002: Evidence in hydrography and density fine structure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic. J. Geophys. Res., 107, 3147, doi:10.1029/2001JC001114.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., , N. L. Bindoff, , and S. R. Rintoul, 2011: Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J. Atmos. Oceanic Technol., 28, 548568, doi:10.1175/2010JTECHO790.1.

    • Search Google Scholar
    • Export Citation
  • Meyer, A., , H. E. Phillips, , B. M. Sloyan, , and K. L. Polzin, 2014: Mixing (MX) Oceanographic Toolbox for EM-APEX* float data applying shear-strain parameterization. Institute for Marine and Antarctic Studies Tech. Rep., 69 pp.

  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Naveira Garabato, A. C., 2009: RRS James Cook cruise 29, 01 Nov-22 Dec 2008. SOFine cruise report: Southern Ocean Finestructure. National Oceanography Centre Southampton Cruise Rep. 35, 216 pp.

  • Naveira Garabato, A. C., , K. I. C. Oliver, , A. J. Watson, , and M. J. Messias, 2004a: Turbulent diapycnal mixing in the Nordic Seas. J. Geophys. Res., 109, C12010, doi:10.1029/2004JC002411.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004b: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , D. P. Stevens, , A. J. Watson, , and W. Roether, 2007: Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature, 447, 194197, doi:10.1038/nature05832.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, doi:10.1175/2010JPO4315.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and G. K. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 3133–3137, doi:10.1002/grl.50542.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , D. Borowski, , C. Völker, , and J.-O. Wölff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, doi:10.1017/S0954102004002251.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. Whitworth, , and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Osborne, A. R., , and T. L. Burch, 1980: Internal solitons in the Andaman Sea. Science, 208, 451460, doi:10.1126/science.208.4443.451.

  • Park, Y. H., , E. Charriaud, , and M. Fieux, 1998: Thermohaline structure of the Antarctic surface water winter water in the Indian sector of the Southern Ocean. J. Mar. Syst., 17, 523, doi:10.1016/S0924-7963(98)00026-8.

    • Search Google Scholar
    • Export Citation
  • Park, Y. H., , J. L. Fuda, , I. Durand, , and A. C. N. Garabato, 2008: Internal tides and vertical mixing over the Kerguelen Plateau. Deep-Sea Res. II, 55, 582593, doi:10.1016/j.dsr2.2007.12.027.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., , and N. L. Bindoff, 2014: On the non-equivalent barotropic structure of the Antarctic Circumpolar Current: An observational perspective. J. Geophys. Res. Oceans, 119, 5221–5243, doi:10.1002/2013JC009516.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., , and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, doi:10.1016/j.dsr2.2005.10.017.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, doi:10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , K. G. Speer, , J. M. Toole, , and R. W. Schmitt, 1996: Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 5457, doi:10.1038/380054a0.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., , E. Kunze, , J. Hummon, , and E. Firing, 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205224, doi:10.1175/1520-0426(2002)019<0205:TFROLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., , E. Kunze, , J. M. Toole, , and R. W. Schmitt, 2003: The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33, 234248, doi:10.1175/1520-0485(2003)033<0234:TPOFEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., , A. C. Naveira Garabato, , T. N. Huussen, , B. M. Sloyan, , and S. N. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, doi:10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., , and A. C. Naveira Garabato, 2013: Dynamics of the Southern Ocean circulation. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed., G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Elsevier, 471–492.

  • Sallée, J. B., , K. Speer, , and R. Morrow, 2008: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., , R. G. Drever, , and J. H. Dunlap, 1978: A velocity profiler based on the principles of geomagnetic induction. Deep-Sea Res., 25, 183210, doi:10.1016/0146-6291(78)90006-1.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32, L18603, doi:10.1029/2005GL023568.

  • Sloyan, B. M., , and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, doi:10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , L. D. Talley, , T. K. Chereskin, , R. Fine, , and J. Holte, 2010: Antarctic Intermediate Water and Subantarctic Mode Water formation in the southeast Pacific: The role of turbulent mixing. J. Phys. Oceanogr., 40, 15581574, doi:10.1175/2010JPO4114.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., , and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, doi:10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., , and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, doi:10.1029/2008JC005108.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , J. M. Toole, , and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , A. C. Naveira Garabato, , J. R. Ledwell, , A. M. Thurnherr, , J. M. Toole, , and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., , S. T. Gille, , J. A. MacKinnon, , and J. Sprintall, 2007: Spatial and temporal patterns of small-scale mixing in Drake Passage. J. Phys. Oceanogr., 37, 572592, doi:10.1175/JPO3021.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Toggweiler, J. R., , and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, doi:10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321852, doi:10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Meurs, P., 1998: Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 13631388, doi:10.1175/1520-0485(1998)028<1363:IBNIML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , A. C. Naveira Garabato, , and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , K. L. Polzin, , A. C. Naveira Garabato, , K. L. Sheen, , and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, doi:10.1175/JPO-D-12-0154.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., , L. D. Talley, , and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett.,39, L18612, doi:10.1029/2012GL053196.

  • Whitworth, T., , and W. D. Nowlin, 1987: Water masses and currents of the Southern Ocean at the Greenwich meridian. J. Geophys. Res., 92, 64626476, doi:10.1029/JC092iC06p06462.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., , and E. A. D’Asaro, 1997: Direct simulation of internal wave energy transfer. J. Phys. Oceanogr., 27, 19371945, doi:10.1175/1520-0485(1997)027<1937:DSOIWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , Z. Jing, , S. Riser, , and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 124 124 13
PDF Downloads 126 126 13

Mixing Variability in the Southern Ocean

View More View Less
  • 1 CSIRO Ocean and Atmosphere Flagship, and Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
  • | 2 CSIRO Ocean and Atmosphere Flagship, Hobart, Australia
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 4 Institute for Marine and Antarctic Studies, University of Tasmania, and ARC Centre of Excellence for Climate System Science, Hobart, Australia
  • | 5 CSIRO Ocean and Atmosphere Flagship, and ARC Centre of Excellence for Climate System Science, and Institute for Marine and Antarctic Studies, University of Tasmania, and Antarctic Climate and Ecosystems CRC, Hobart, Australia
© Get Permissions
Restricted access

Abstract

A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.

Corresponding author address: Amelie Meyer, Norwegian Polar Institute, Framsenteret, 9296 Tromsø, Norway. E-mail: amelie.meyer@npolar.no

Abstract

A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.

Corresponding author address: Amelie Meyer, Norwegian Polar Institute, Framsenteret, 9296 Tromsø, Norway. E-mail: amelie.meyer@npolar.no
Save