• Alexander, M. A., , and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137, doi:10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alfultis, M., , and P. Cornillon, 2001: Annual and interannual changes in the North Atlantic subtropical mode water layer properties. J. Phys. Oceanogr., 31, 20662086, doi:10.1175/1520-0485(2001)031<2066:AAICIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bates, N. R., , A. C. Pequignet, , R. J. Johnson, , and N. Gruber, 2002: A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature, 420, 489493, doi:10.1038/nature01253.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., , and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581591, doi:10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , C. W. Böning, , J. Getzlaff, , J. M. Molines, , and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, doi:10.1175/2008JCLI2404.1.

    • Search Google Scholar
    • Export Citation
  • Billheimer, S., , and L. D. Talley, 2013: Near cessation of Eighteen Degree Water renewal in the western North Atlantic in the warm winter of 2011–2012. J. Geophys. Res. Oceans, 118, 68386853, doi:10.1002/2013JC009024.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , M. Scheinert, , J. Dengg, , A. Biastoch, , and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , M. S. Lozier, , S. F. Gary, , and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247, doi:10.1038/nature07979.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., , and S. Levitus, 1997: Objective analyses of temperature and salinity for the World Ocean on a 1/4° grid. NOAA Atlas NESDIS 11, 83 pp.

  • Buckley, M. W., , R. M. Ponte, , G. Forget, , and P. Heimbach, 2014: Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Climate, 27, 49965018, doi:10.1175/JCLI-D-13-00316.1.

    • Search Google Scholar
    • Export Citation
  • Burkholder, K. C., , and M. S. Lozier, 2011: Subtropical to subpolar pathways in the North Atlantic: Deductions from Lagrangian trajectories. J. Geophys. Res., 116, C07017, doi:10.1029/2010JC006697.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369, doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., , G. Holloway, , and A. E. Gargett, 1990: Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr., 20, 817830, doi:10.1175/1520-0485(1990)020<0817:SOTGOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Czeschel, L., 2004: The role of eddies for the deep water formation in the Labrador Sea. Ph.D. thesis, Christian-Albrechts-Universität, 101 pp.

  • Davis, X. J., , F. Straneo, , Y.-O. Kwon, , K. A. Kelly, , and J. M. Toole, 2013: Evolution and formation of North Atlantic Eighteen Degree Water in the Sargasso Sea from moored data. Deep-Sea Res. II, 91, 1124, doi:10.1016/j.dsr2.2013.02.024.

    • Search Google Scholar
    • Export Citation
  • de Boisséson, E., , V. Thierry, , H. Mercier, , G. Caniaux, , and D. Desbruyères, 2012: Origin, formation and variability of the Subpolar Mode Water located over the Reykjanes Ridge. J. Geophys. Res., 117, C12005, doi:10.1029/2011JC007519.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., , and W. K. Dewar, 2013: Volume and potential vorticity budgets of Eighteen Degree Water. J. Phys. Oceanogr., 43, 23092321, doi:10.1175/JPO-D-13-052.1.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., , N. Wienders, , and W. K. Dewar, 2014: Potential vorticity budgets in the North Atlantic Ocean. J. Phys. Oceanogr., 44, 164178, doi:10.1175/JPO-D-13-087.1.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., , J. Lazier, , J. Meincke, , P. Rhines, , and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241295, doi:10.1016/S0079-6611(97)00002-5.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr.,34, 1214–1231, doi:10.1175/1520-0485(2004)034,1214:HBITGS.2.0.CO;2.

  • Dong, S., , S. L. Hautala, , and K. A. Kelly, 2007: Interannual variations in upper-ocean heat content and heat transport convergence in the western North Atlantic. J. Phys. Oceanogr., 37, 26822697, doi:10.1175/2007JPO3645.1.

    • Search Google Scholar
    • Export Citation
  • Douglass, E. M., , Y.-O. Kwon, , and S. R. Jayne, 2013: A comparison of Subtropical Mode Waters in a climatologically-forced model. Deep-Sea Res. II, 91, 139151, doi:10.1016/j.dsr2.2013.02.023.

    • Search Google Scholar
    • Export Citation
  • Forget, G., , G. Maze, , M. Buckley, , and J. Marshall, 2011: Estimated seasonal cycle of North Atlantic Eighteen Degree water volume. J. Phys. Oceanogr., 41, 269286, doi:10.1175/2010JPO4257.1.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, D. M., , Y.-O. Kwon, , and B. A. Hodges, 2013: Direct observation of Subtropical Mode Water circulation in the western North Atlantic Ocean. Deep-Sea Res. II, 91, 3556, doi:10.1016/j.dsr2.2013.02.027.

    • Search Google Scholar
    • Export Citation
  • Gary, S. F., , M. S. Lozier, , C. Böning, , and A. Biastoch, 2011: Deciphering the pathways for the deep limb of the meridional overturning circulation. Deep-Sea Res. II, 58, 17811797, doi:10.1016/j.dsr2.2010.10.059.

    • Search Google Scholar
    • Export Citation
  • Gary, S. F., , M. S. Lozier, , Y.-O. Kwon, , and J.-J. Park, 2014: The fate of North Atlantic Subtropical Mode Water in the FLAME model. J. Phys. Oceanogr., 44, 13541371, doi:10.1175/JPO-D-13-0202.1.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and L. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386.

  • Jenkins, W. J., 1982: On the climate of a subtropical ocean gyre: Decadal time scale variations in water mass renewal in the Sargasso Sea. J. Mar. Res., 40, 265290.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 2012: New perspectives on Eighteen-Degree Water formation in the North Atlantic. J. Oceanogr., 68, 4552, doi:10.1007/s10872-011-0029-0.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., , R. S. Pickart, , and R. C. Millard, 1999: Long-term hydrographic changes at 52 and 66°W in the North Atlantic Subtropical Gyre & Caribbean. Deep-Sea Res. II, 46, 245278, doi:10.1016/S0967-0645(98)00102-7.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., , L. Thomas, , and F. Bahr, 2009: Wintertime observations of Subtropical Mode Water formation within the Gulf Stream. Geophys. Res. Lett., 36, L02607, doi:10.1029/2008GL035918.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., , L. Thomas, , W. K. Dewar, , and J. B. Girton, 2013: Eighteen Degree Water formation within the Gulf Stream during CLIMODE. Deep-Sea Res. II, 91, 110, doi:10.1016/j.dsr2.2013.02.019.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. M., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., , and S. Dong, 2013: The contributions of atmosphere and ocean to North Atlantic Subtropical Mode Water volume anomalies. Deep-Sea Res. II, 91, 111127, doi:10.1016/j.dsr2.2013.02.020.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19, 98106, doi:10.1111/j.2153-3490.1967.tb01462.x.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., 2003: Observation of general circulation and water mass variability in the North Atlantic subtropical mode water region. Ph.D. thesis, University of Washington, 161 pp.

  • Kwon, Y.-O., , and S. C. Riser, 2004: North Atlantic Subtropical Mode Water: A history of ocean-atmosphere interaction 1961–2000. Geophys. Res. Lett., 31, L19307, doi:10.1029/2004GL021116.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., , and S. C. Riser, 2005: The general circulation of the western subtropical North Atlantic observed using profiling floats. J. Geophys. Res., 110, C10012, doi:10.1029/2005JC002909.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., , R. Burgett, , and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lumpkin, R., , A.-M. Treguier, , and K. Speer, 2002: Lagrangian eddy scales in the Northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440, doi:10.1175/1520-0485-32.9.2425.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , D. Jamous, , and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res., 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and et al. , 2009: Observing the cycle of convection and restratification over the Gulf Stream system and the subtropical gyre of the North Atlantic Ocean: Preliminary results from the CLIMODE field campaign. Bull. Amer. Meteor. Soc., 90, 13371350, doi:10.1175/2009BAMS2706.1.

    • Search Google Scholar
    • Export Citation
  • Maze, G., , and J. Marshall, 2011: Diagnosing the observed seasonal cycle of Atlantic subtropical mode water using potential vorticity and its attendant theorems. J. Phys. Oceanogr., 41, 19861999, doi:10.1175/2011JPO4576.1.

    • Search Google Scholar
    • Export Citation
  • Maze, G., , G. Forget, , M. Buckley, , J. Marshall, , and I. Cerovečki, 2009: Using Transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic Eighteen Degree Water formation. J. Phys. Oceanogr., 39, 18181835, doi:10.1175/2009JPO3985.1.

    • Search Google Scholar
    • Export Citation
  • Maze, G., , J. Deshayes, , J. Marshall, , A.-M. Tréguier, , A. Chronis, , and L. Vollmer, 2013: Surface vertical PV fluxes and subtropical mode water formation in an eddy-resolving numerical simulation. Deep-Sea Res. II, 91, 128138, doi:10.1016/j.dsr2.2013.02.026.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., , P.-M. Poulain, , J. W. Pelton, , and M. E. Maltrud, 2002: Eulerian and Lagrangian statistics from surface drifters and a high-resolution POP simulation in the North Atlantic. J. Phys. Oceanogr., 32, 24722491, doi:10.1175/1520-0485-32.9.2472.

    • Search Google Scholar
    • Export Citation
  • Olsina, O., , N. Wienders, , and W. K. Dewar, 2013: An estimate of the climatology and variability of Eighteen Degree Water potential vorticity forcing. Deep-Sea Res. II, 91, 8495, doi:10.1016/j.dsr2.2013.02.018.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1996: MOM 2 version 2.0 (beta): Documentation, user’s guide, and reference manual. GFDL Ocean Tech. Rep. 3.2, 350 pp.

  • Palter, J. B., , M. S. Lozier, , and R. T. Barber, 2005: The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature, 437, 687692, doi:10.1038/nature03969.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., , A. Kuhl, , and W. Zenk, 1987: The Madeira Mode Water. J. Phys. Oceanogr., 17, 15611570, doi:10.1175/1520-0485(1987)017<1561:TMMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Speer, K., , and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, doi:10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Speer, K., , and G. Forget, 2013: Global distribution and formation of mode waters. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 211–226.

  • Talley, L., 1996: North Atlantic circulation and variability reviewed for the CNLS conference. Physica D, 98, 625646, doi:10.1016/0167-2789(96)00123-6.

    • Search Google Scholar
    • Export Citation
  • Talley, L., , and M. Raymer, 1982: Eighteen Degree Water variability. J. Mar. Res., 40, 757775.

  • Timlin, M. S., , M. A. Alexander, , and C. Deser, 2002: On the reemergence of North Atlantic SST anomalies. J. Climate, 15, 27072712, doi:10.1175/1520-0442(2002)015<2707:OTRONA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1959: The 18°C water in the Sargasso Sea. Deep-Sea Res., 5, 297305, doi:10.1016/0146-6313(58)90026-1.

  • Worthington, L. V., 1972: Anticyclogenesis in the oceans as a result of outbreaks of continental polar air. Studies in Physical Oceanography: A Tribute to Georg Wust on His 80th Birthday, A. L. Gordon, Ed., Gordon & Breach, 169–178.

  • Worthington, L. V., 1976: On the North Atlantic Circulation. Johns Hopkins Oceanographic Studies, Vol. 6, Johns Hopkins University Press, 110 pp.

  • Wyville-Thompson, C., 1877: The Voyage of the Challenger. The Atlantic. Vol. 1. Macmillan, 498 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 1
PDF Downloads 19 19 2

Year-to-Year Reoutcropping of Eighteen Degree Water in an Eddy-Resolving Ocean Simulation

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Department of Oceanography, Kyungpook National University, Daegu, South Korea
  • | 3 Scottish Association for Marine Sciences, Oban, United Kingdom
  • | 4 Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina
© Get Permissions
Restricted access

Abstract

Winter outcropping of the Eighteen Degree Water (EDW) and its subsequent dispersion are studied using a ° eddy-resolving simulation of the Family of Linked Atlantic Modeling Experiments (FLAME). Outcropped EDW columns in the model simulations are detected in each winter from 1990 to 1999, and particles are deployed in the center of each outcropped EDW column. Subsequently, the trajectories of these particles are calculated for the following 5 yr. The particles slowly spread away from the outcropping region into the nonoutcropping/subducted EDW region south of ~30°N and eventually to the non-EDW region in the greater subtropical gyre. Approximately 30% of the particles are found in non-EDW waters 1 yr after deployment; after 5 yr, only 25% of the particles are found within EDW. The reoutcropping time is defined as the number of years between when a particle is originally deployed in an outcropping EDW column and when that particle is next found in an outcropping EDW column. Of the particles, 66% are found to reoutcrop as EDW in 1 yr, and less than 5% of the particles outcrop in each of the subsequent 4 yr. While the individual trajectories exhibit significant eddy-like motions, the time scale of reoutcropping is primarily set by the mean circulation. The dominance of reoutcropping in 1 yr suggests that EDW outcropping contributes considerably to the persistence of surface temperature anomalies from one winter to the next, that is, the reemergence of winter sea surface temperature anomalies.

Corresponding author address: Young-Oh Kwon, Physical Oceanography Department, Woods Hole Oceanographic Institution, MS 21, Woods Hole, MA, 02543. E-mail: yokwon@whoi.edu

Abstract

Winter outcropping of the Eighteen Degree Water (EDW) and its subsequent dispersion are studied using a ° eddy-resolving simulation of the Family of Linked Atlantic Modeling Experiments (FLAME). Outcropped EDW columns in the model simulations are detected in each winter from 1990 to 1999, and particles are deployed in the center of each outcropped EDW column. Subsequently, the trajectories of these particles are calculated for the following 5 yr. The particles slowly spread away from the outcropping region into the nonoutcropping/subducted EDW region south of ~30°N and eventually to the non-EDW region in the greater subtropical gyre. Approximately 30% of the particles are found in non-EDW waters 1 yr after deployment; after 5 yr, only 25% of the particles are found within EDW. The reoutcropping time is defined as the number of years between when a particle is originally deployed in an outcropping EDW column and when that particle is next found in an outcropping EDW column. Of the particles, 66% are found to reoutcrop as EDW in 1 yr, and less than 5% of the particles outcrop in each of the subsequent 4 yr. While the individual trajectories exhibit significant eddy-like motions, the time scale of reoutcropping is primarily set by the mean circulation. The dominance of reoutcropping in 1 yr suggests that EDW outcropping contributes considerably to the persistence of surface temperature anomalies from one winter to the next, that is, the reemergence of winter sea surface temperature anomalies.

Corresponding author address: Young-Oh Kwon, Physical Oceanography Department, Woods Hole Oceanographic Institution, MS 21, Woods Hole, MA, 02543. E-mail: yokwon@whoi.edu
Save