• Agrawal, Y. C., , E. A. Terray, , M. A. Donelan, , P. A. Hwang, , A. J. Williams III, , W. M. Drennan, , K. K. Kahma, , and S. A. Krtaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., , and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33, 12741298, doi:10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anis, A., , and J. Moum, 1992: The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr., 22, 12211227, doi:10.1175/1520-0485(1992)022<1221:TSSLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., , B. Chapron, , and F. Collard, 2009: Observation of swell dissipation across oceans. Geophys. Res. Lett.,36, L06607, doi:10.1029/2008GL037030.

  • Belcher, S. E., and et al. , 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Brodtkorb, P., , P. Johannesson, , G. Lindgren, , I. Rychlik, , J. Rydén, , and E. Sjö, 2000: WAFO—A Matlab toolbox for the analysis of random waves and loads. Proc. 10th Int. Offshore and Polar Eng. Conf., Vol. 3, Seattle, WA, ISOPE, 343–350.

  • Craig, P. D., , and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dickey, T., and et al. , 2012: Introduction to special section on recent advances in the study of optical variability in the near-surface and upper ocean. J. Geophys. Res., 117, C00H20, doi:10.1029/2012JC007964.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 49715029, doi:10.1029/JC092iC05p04971.

    • Search Google Scholar
    • Export Citation
  • Drazen, D. A., , W. K. Melville, , and L. Lenain, 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332, doi:10.1017/S0022112008002826.

    • Search Google Scholar
    • Export Citation
  • Drennan, W., , M. Donelan, , E. Terray, , and K. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1989: Ocean turbulence. Annu. Rev. Fluid Mech., 21, 419451, doi:10.1146/annurev.fl.21.010189.002223.

  • Gemmrich, J. R., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gemmrich, J. R., , M. L. Banner, , and C. Garrett, 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking. J. Phys. Oceanogr., 38, 12961312, doi:10.1175/2007JPO3762.1.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., , and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, doi:10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Grare, L., , L. Lenain, , and W. K. Melville, 2013: Wave-coherent airflow and critical layers over ocean waves. J. Phys. Oceanogr., 43, 21562172, doi:10.1175/JPO-D-13-056.1.

    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., , and K. R. Phadnis, 2005: Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm. Meas. Sci. Technol., 16, 19611969, doi:10.1088/0957-0233/16/10/011.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S., , M. Donelan, , J. Lumley, , and E. Terray, 1983: Wave-turbulence interactions in the upper ocean. Part II. Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13, 19881999, doi:10.1175/1520-0485(1983)013<1988:WTIITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., , and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, doi:10.1175/2010JPO4383.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1991: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. Roy. Soc. London, A434, 913, doi:10.1098/rspa.1991.0075.

    • Search Google Scholar
    • Export Citation
  • Lacy, J. R., , and C. R. Sherwood, 2004: Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow. J. Atmos. Oceanic Technol., 21, 14481461, doi:10.1175/1520-0426(2004)021<1448:AOAPAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., , and T. Sanford, 2009: Vorticity and turbulence in the wake of a bridge pier. IEEE J. Oceanic Eng., 34, 307314, doi:10.1109/JOE.2009.2019383.

    • Search Google Scholar
    • Export Citation
  • Lienhard, J. H., 1966: Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Washington State University Bull. 300, 32 pp. [Available online at www.uh.edu/engines/vortexcylinders.pdf.]

  • Melville, W. K., 1994: Energy dissipation in breaking waves. J. Phys. Oceanogr., 24, 20412049, doi:10.1175/1520-0485(1994)024<2041:EDBBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., , and P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature, 417, 5863, doi:10.1038/417058a.

  • Melville, W. K., , F. Veron, , and C. J. White, 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454, 203233, doi:10.1017/S0022112001007078.

    • Search Google Scholar
    • Export Citation
  • Mollo-Christensen, E., 1968: Wind tunnel test of the superstructure of the R/V Flip for assessment of wind field distortion. MIT Fluid Dynamics Research Laboratory, 34 pp.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., , and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London,A331, 735800, doi:10.1098/rsta.1990.0098.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., , B. Chapron, , F. Ardhuin, , and A. Soloviev, 2013: A note on the direct injection of turbulence by breaking waves. Ocean Modell., 70, 145151, doi:10.1016/j.ocemod.2012.09.001.

    • Search Google Scholar
    • Export Citation
  • Romero, L., , and W. K. Melville, 2010: Numerical modeling of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 466486, doi:10.1175/2009JPO4128.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., , W. K. Melville, , and J. M. Kleiss, 2012: Spectral energy dissipation due to surface-wave breaking. J. Phys. Oceanogr., 42, 14211444, doi:10.1175/JPO-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Schwendeman, M. S., , J. Thomson, , and J. R. Gemmrich, 2014: Wave breaking dissipation in a young wind sea. J. Phys. Oceanogr., 44, 104127, doi:10.1175/JPO-D-12-0237.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , and K. F. Rieder, 1997: Wave induced motion of flip. Ocean Eng., 24, 95110, doi:10.1016/0029-8018(96)00008-X.

  • Snyder, R. L., , F. W. Dobson, , J. A. Elliott, , and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159, doi:10.1017/S0022112081002528.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., , and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50, 371395, doi:10.1016/S0967-0637(03)00004-9.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174, doi:10.1017/S0022112004008882.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., , B. Ward, , and K. H. Christensen, 2013: Wave-turbulence scaling in the ocean mixed layer. Ocean Sci., 9, 597608, doi:10.5194/os-9-597-2013.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., , K. H. Christensen, , and B. Ward, 2014: Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. J. Geophys. Res., 119, 18991910, doi:10.1002/2013JC009537.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., , and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett.,40, 3074–3079, doi:10.1002/grl.50584.

  • Teixeira, M. A. C., , and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267, doi:10.1017/S0022112002007838.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams III, , P. A. Hwang, , and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • The WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810, doi:10.1175/1520-0485(1988)018,1775:TWMTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., 2012: Wave breaking dissipation observed with “SWIFT” drifters. J. Atmos. Oceanic Technol., 29, 18661882, doi:10.1175/JTECH-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. 2nd ed. Cambridge University Press, 429 pp.

  • Veron, F., , W. K. Melville, , and L. Lenain, 2009: Measurements of ocean surface turbulence and wave-turbulence interactions. J. Phys. Oceanogr., 39, 23102323, doi:10.1175/2009JPO4019.1.

    • Search Google Scholar
    • Export Citation
  • Wiles, P. J., , T. P. Rippeth, , J. H. Simpson, , and P. J. Hendricks, 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett.,33, L21608, doi:10.1029/2006GL027050.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 145 14
PDF Downloads 142 142 17

Field Measurements of Surface and Near-Surface Turbulence in the Presence of Breaking Waves

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

Wave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.

Current affiliation: Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, Paris, France.

Corresponding author address: Peter Sutherland, Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, 4 Place Jussieu, Paris 75005, France. E-mail: peter.sutherland@locean-ipsl.upmc.fr

Abstract

Wave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.

Current affiliation: Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, Paris, France.

Corresponding author address: Peter Sutherland, Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, 4 Place Jussieu, Paris 75005, France. E-mail: peter.sutherland@locean-ipsl.upmc.fr
Save