• Clark, S., , and J. Doering, 2006: Laboratory experiments on frazil-size characteristics in a counterrotating flume. J. Hydraul. Eng., 132, 94101, doi:10.1061/(ASCE)0733-9429(2006)132:1(94).

    • Search Google Scholar
    • Export Citation
  • Cotter, C. J., , D. A. Ham, , C. C. Pain, , and S. Reich, 2009: LBB stability of a mixed Galerkin finite element pair for fluid flow simulations. J. Comput. Phys., 228, 336348, doi:10.1016/j.jcp.2008.09.014.

    • Search Google Scholar
    • Export Citation
  • Daly, S. F., 1994: Evolution of frazil ice in natural water bodies. International Association for Hydraulic Research working group on thermal regimes: Report on frazil ice, U.S. Army Cold Regions Research and Engineering Laboratory Special Rep. 94-23, 19–24.

  • Dieckmann, G., , G. Rohardt, , H. Hellmer, , and J. Kipfstuhl, 1986: The occurrence of ice platelets at 250 m depth near the Filchner Ice Shelf and its significance for sea ice biology. Deep-Sea Res., 33A, 141148, doi:10.1016/0198-0149(86)90114-7.

    • Search Google Scholar
    • Export Citation
  • Foldvik, A., , and T. Kvinge, 1974: Conditional instability of sea water at the freezing point. Deep-Sea Res. Oceanogr. Abstr., 21, 169174, doi:10.1016/0011-7471(74)90056-4.

    • Search Google Scholar
    • Export Citation
  • Foldvik, A., and et al. , 2004: Ice Shelf Water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109, C02015, doi:10.1029/2003JC002008.

    • Search Google Scholar
    • Export Citation
  • Gosink, J. P., , and T. E. Osterkamp, 1983: Measurements and analyses of velocity profiles and frazil ice-crystal rise velocities during periods of frazil-ice formation in rivers. Ann. Glaciol., 4, 7984.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H., , and D. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, doi:10.1017/S0954102089000490.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., , and D. L. Feltham, 2005: Frazil dynamics and precipitation in a water column with depth-dependent supercooling. J. Fluid Mech., 530, 101124, doi:10.1017/S002211200400285X.

    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., , P. J. Langhorne, , G. H. Leonard, , and C. L. Stevens, 2014: Extension of an Ice Shelf Water plume model beneath sea ice with application in McMurdo Sound, Antarctica. J. Geophys. Res. Oceans, 119, 8662–8687, doi:10.1002/2013JC009411.

    • Search Google Scholar
    • Export Citation
  • Jacobs, C. T., , G. S. Collins, , M. D. Piggott, , S. C. Kramer, , and C. R. G. Wilson, 2012: Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes. Geophys. J. Int., 192, 647–665, doi:10.1093/gji/ggs059.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., , A. L. Gordon, , and J. L. Ardai, 1979: Circulation and melting beneath the Ross Ice Shelf. Science, 203, 439443, doi:10.1126/science.203.4379.439.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., , and A. Bombosch, 1995: Modeling the effects of frazil ice crystals on the dynamics of Ice Shelf Water plumes. J. Geophys. Res., 100, 69676981, doi:10.1029/94JC03227.

    • Search Google Scholar
    • Export Citation
  • Jordan, J. R., , P. R. Holland, , A. Jenkins, , M. D. Piggott, , and S. Kimura, 2014: Modeling ice-ocean interaction in ice-shelf crevasses. J. Geophys. Res. Oceans, 119, 9951008, doi:10.1002/2013JC009208.

    • Search Google Scholar
    • Export Citation
  • Khazendar, A., , and A. Jenkins, 2003: A model of marine ice formation within Antarctic ice shelf rifts. J. Geophys. Res., 108, 3235, doi:10.1029/2002JC001673.

    • Search Google Scholar
    • Export Citation
  • Kimura, S., , A. Candy, , P. Holland, , M. Piggott, , and A. Jenkins, 2013: Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves. Ocean Modell., 67, 39–51, doi:10.1016/j.ocemod.2013.03.004.

    • Search Google Scholar
    • Export Citation
  • Leonard, G. H., , C. R. Purdie, , P. J. Langhorne, , T. G. Haskell, , M. J. M. Williams, , and R. D. Frew, 2006: Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. J. Geophys. Res., 111, C04012, doi:10.1029/2005JC002952.

    • Search Google Scholar
    • Export Citation
  • Linden, P., 2000: Convection in the environment. Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, G. K. Batchelor, H. K. Moffatt, M. G. Worster, Eds., Cambridge University Press, 289–345.

  • Mahoney, A. R., , A. J. Gough, , P. J. Langhorne, , N. J. Robinson, , C. L. Stevens, , M. M. J. Williams, , and T. G. Haskell, 2011: The seasonal appearance of Ice Shelf Water in coastal Antarctica and its effect on sea ice growth. J. Geophys. Res., 116, C11032, doi:10.1029/2011JC007060.

    • Search Google Scholar
    • Export Citation
  • Martin, S., 1981: Frazil ice in rivers and oceans. Annu. Rev. Fluid Mech., 13, 379397, doi:10.1146/annurev.fl.13.010181.002115.

  • McFarlane, V., , M. Loewen, , and F. Hicks, 2014: Laboratory measurements of the rise velocity of frazil ice particles. Cold Reg. Sci. Technol., 106–107, 120130, doi:10.1016/j.coldregions.2014.06.009.

    • Search Google Scholar
    • Export Citation
  • McGuinness, M. J., , M. J. M. Williams, , P. J. Langhorne, , C. Purdie, , and J. Crook, 2009: Frazil deposition under growing sea ice. J. Geophys. Res., 114, C07014, doi:10.1029/2007JC004414.

    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., , and S. Østerhus, 2004: Interannual variability and ventilation timescales in the ocean cavity beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophys. Res., 109, C04014, doi:10.1029/2003JC002149.

    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., , S. Osterhus, , K. Makinson, , T. Gammelsrd, , and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, doi:10.1029/2007RG000250.

    • Search Google Scholar
    • Export Citation
  • Parkinson, S. D., , J. Hill, , M. D. Piggott, , and P. A. Allison, 2014: Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements. Geosci. Model Dev. Discuss., 7, 32193264, doi:10.5194/gmdd-7-3219-2014.

    • Search Google Scholar
    • Export Citation
  • Penrose, J. D., , M. Conde, , and T. J. Pauly, 1994: Acoustic detection of ice crystals in Antarctic waters. J. Geophys. Res.,99, 12 573–12 580, doi:10.1029/93JC03507.

  • Piggott, M. D., , G. J. Gorman, , C. C. Pain, , P. A. Allison, , A. S. Candy, , B. T. Martin, , and M. R. Wells, 2008: A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int. J. Numer. Methods Fluids, 56, 10031015, doi:10.1002/fld.1663.

    • Search Google Scholar
    • Export Citation
  • Piggott, M. D., , P. Farrell, , C. Wilson, , G. Gorman, , and C. Pain, 2009: Anisotropic mesh adaptivity for multi-scale ocean modelling. Philos. Trans. Roy. Soc., A367, 45914611, doi:10.1098/rsta.2009.0155.

    • Search Google Scholar
    • Export Citation
  • Price, D., , W. Rack, , P. J. Langhorne, , C. Haas, , G. Leonard, , and K. Barnsdale, 2014: The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice. Cryosphere,8, 1031–1039, doi:10.5194/tc-8-1031-2014.

  • Robinson, N. J., , M. J. M. Williams, , P. J. Barrett, , and A. R. Pyne, 2010: Observations of flow and ice-ocean interaction beneath the McMurdo Ice Shelf, Antarctica. J. Geophys. Res., 115, C03025, doi:10.1029/2008JC005255.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: Triangular and asymmetric salt fingers. J. Phys. Oceanogr., 24, 855860, doi:10.1175/1520-0485(1994)024<0855:TAASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smetacek, V., , R. Scharek, , L. I. Gordon, , H. Eicken, , E. Fahrbach, , G. Rohardt, , and S. Moore, 1992: Early spring phytoplankton blooms in ice platelet layers of the southern Weddell Sea, Antarctica. Deep-Sea Res., 39A, 153168, doi:10.1016/0198-0149(92)90102-Y.

    • Search Google Scholar
    • Export Citation
  • Ye, S. Q., , J. Doering, , and H. T. Shen, 2004: A laboratory study of frazil evolution in a counter-rotating flume. Can. J. Civ. Eng., 31, 899914, doi:10.1139/l04-056.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 3
PDF Downloads 35 35 2

On the Conditional Frazil Ice Instability in Seawater

View More View Less
  • 1 British Antarctic Survey, Cambridge, United Kingdom
  • | 2 Department of Earth Science and Engineering, and Grantham Institute for Climate Change, Imperial College London, London, United Kingdom
© Get Permissions
Restricted access

Abstract

It has been suggested that the presence of frazil ice can lead to a conditional instability in seawater. Any frazil forming in the water column reduces the bulk density of a parcel of frazil–seawater mixture, causing it to rise. As a result of the pressure decrease in the freezing point, this causes more frazil to form, causing the parcel to accelerate, and so on. This study uses linear stability analysis and a nonhydrostatic ocean model to study this instability. The authors find that frazil ice growth caused by the rising of supercooled water is indeed able to generate a buoyancy-driven instability. Even in a gravitationally stable water column, the frazil ice mechanism can still generate convection. The instability does not operate in the presence of strong density stratification, high thermal driving (warm water), a small initial perturbation, high background mixing, or the prevalence of large frazil ice crystals. In an unstable water column, the instability is not necessarily expressed in frazil ice at all times; an initial frazil perturbation may melt and refreeze. Given a large enough initial perturbation, this instability can allow significant ice growth. A model shows frazil ice growth in an Ice Shelf Water plume several kilometers from an ice shelf, under similar conditions to observations of frazil ice growth under sea ice. The presence of this instability could be a factor affecting the growth of sea ice near ice shelves, with implications for Antarctic Bottom Water formation.

Corresponding author address: James Jordan, British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET, United Kingdom. E-mail: jamrda26@bas.ac.uk

Abstract

It has been suggested that the presence of frazil ice can lead to a conditional instability in seawater. Any frazil forming in the water column reduces the bulk density of a parcel of frazil–seawater mixture, causing it to rise. As a result of the pressure decrease in the freezing point, this causes more frazil to form, causing the parcel to accelerate, and so on. This study uses linear stability analysis and a nonhydrostatic ocean model to study this instability. The authors find that frazil ice growth caused by the rising of supercooled water is indeed able to generate a buoyancy-driven instability. Even in a gravitationally stable water column, the frazil ice mechanism can still generate convection. The instability does not operate in the presence of strong density stratification, high thermal driving (warm water), a small initial perturbation, high background mixing, or the prevalence of large frazil ice crystals. In an unstable water column, the instability is not necessarily expressed in frazil ice at all times; an initial frazil perturbation may melt and refreeze. Given a large enough initial perturbation, this instability can allow significant ice growth. A model shows frazil ice growth in an Ice Shelf Water plume several kilometers from an ice shelf, under similar conditions to observations of frazil ice growth under sea ice. The presence of this instability could be a factor affecting the growth of sea ice near ice shelves, with implications for Antarctic Bottom Water formation.

Corresponding author address: James Jordan, British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET, United Kingdom. E-mail: jamrda26@bas.ac.uk
Save