• Alford, M. H., , and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, doi:10.1175/JPO3106.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , M. F. Cronin, , and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bray, N. A., , and N. P. Fofonoff, 1981: Available potential-energy for mode eddies. J. Phys. Oceanogr., 11, 3047, doi:10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., , and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., , C. C. Eriksen, , M. D. Levine, , P. Niiler, , C. A. Paulson, , and P. Vanmeurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, doi:10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montegut, C., , G. Madec, , A. S. Fischer, , A. Lazar, , and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Desaubies, Y., , and M. C. Gregg, 1981: Reversible and irreversible finestructure. J. Phys. Oceanogr., 11, 541556, doi:10.1175/1520-0485(1981)011<0541:RAIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frants, M., , G. M. Damerell, , S. T. Gille, , K. J. Heywood, , J. MacKinnon, , and J. Sprintall, 2013: An assessment of density-based finescale methods for estimating diapycnal diffusivity in the Southern Ocean. J. Atmos. Oceanic Technol., 30, 26472661, doi:10.1175/JTECH-D-12-00241.1.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., , and E. Kunze, 1991: Shear and strain in Santa Monica basin. J. Geophys. Res., 96, 16 70916 719, doi:10.1029/91JC01385.

  • Gregg, M. C., , H. E. Seim, , and D. B. Percival, 1993: Statistics of shear and turbulent dissipation profiles in random internal wave fields. J. Phys. Oceanogr., 23, 17771799, doi:10.1175/1520-0485(1993)023<1777:SOSATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , T. B. Sanford, , and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Hennon, T. D., , S. C. Riser, , and M. H. Alford, 2014: Observations of internal gravity waves by Argo floats. J. Phys. Oceanogr., 44, 23702386, doi:10.1175/JPO-D-13-0222.1.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., 1991: Scaling of internal wave predictions for ε. Dynamics of Oceanic Internal Gravity Waves: Proc. Sixth ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 233236.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., , and N. Pomphrey, 1983: Eikonal description of internal wave interactions: A non-diffusive picture of “induced diffusion.” Dyn. Atmos. Oceans, 7, 189219, doi:10.1016/0377-0265(83)90005-2.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., , J. Wright, , and S. M. Flatte, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., , N. Furuichi, , and R. Robertson, 2012: Assessment of fine-scale parameterizations of turbulent dissipation rates near mixing hotspots in the deep ocean. Geophys. Res. Lett., 39, L24601, doi:10.1029/2012GL054068.

    • Search Google Scholar
    • Export Citation
  • Huussen, T. N., , A. C. Naveira-Garabato, , H. L. Bryden, , and E. L. McDonagh, 2012: Is the deep Indian Ocean MOC sustained by breaking internal waves? J. Geophys. Res. Oceans, 117, C08024, doi:10.1029/2012JC008236.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , E. Kunze, , K. E. McTaggart, , and D. W. Moore, 2002: Temporal and spatial structure of the equatorial deep jets in the Pacific Ocean. J. Phys. Oceanogr., 32, 33963407, doi:10.1175/1520-0485(2002)032<3396:TASSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and et al. , 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., , R. Pinkel, , and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, doi:10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , L. K. Rosenfeld, , G. S. Carter, , and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913, doi:10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , E. T. Montgomery, , K. L. Polzin, , L. C. St. Laurent, , R. W. Schmitt, , and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., , E. Kunze, , T. B. Sanford, , J. D. Nash, , M. A. Merrifield, , and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183, doi:10.1175/JPO2886.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., , and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, doi:10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., , K. L. Polzin, , M. S. McCartney, , R. C. Millard, , and D. E. West-Mack, 2002: Evidence in hydrography and density fine structure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic. J. Geophys. Res., 107, 3147, doi:10.1029/2001JC001114.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., , R. C. Lien, , A. Perlin, , J. D. Nash, , M. C. Gregg, , and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, doi:10.1038/ngeo657.

    • Search Google Scholar
    • Export Citation
  • Muller, P., , G. Holloway, , F. Henyey, , and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, doi:10.1029/RG024i003p00493.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, doi:10.1175/2009JPO4199.1.

    • Search Google Scholar
    • Export Citation
  • Padman, L., , M. Levine, , T. Dillon, , J. Morison, , and R. Pinkel, 1990: Hydrography and microstructure of an Arctic cyclonic eddy. J. Geophys. Res., 95, 94119420, doi:10.1029/JC095iC06p09411.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , and S. Anderson, 1992: Toward a statistical description of finescale strain in the thermocline. J. Phys. Oceanogr., 22, 773795, doi:10.1175/1520-0485(1992)022<0773:TASDOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , and S. Anderson, 1997: Shear, strain, and Richardson number variations in the thermocline. Part I: Statistical description. J. Phys. Oceanogr., 27, 264281, doi:10.1175/1520-0485(1997)027<0264:SSARNV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , J. Sherman, , J. Smith, , and S. Anderson, 1991: Strain: Observations of the vertical gradient of isopycnal vertical displacement. J. Phys. Oceanogr., 21, 527540, doi:10.1175/1520-0485(1991)021<0527:SOOTVG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 1996: Statistics of the Richardson number: Mixing models and finestructure. J. Phys. Oceanogr., 26, 14091425, doi:10.1175/1520-0485(1996)026<1409:SOTRNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , and R. Ferrari, 2004: Isopycnal dispersion in NATRE. J. Phys. Oceanogr., 34, 247257, doi:10.1175/1520-0485(2004)034<0247:IDIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , A. C. Naveira Garabato, , T. N. Huussen, , B. M. Sloyan, , and S. N. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 1383–1419, doi:10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and et al. , 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, doi:10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255285, doi:10.1146/annurev.fl.26.010194.001351.

  • Schmitt, R. W., 2003: Observational and laboratory insights into salt finger convection. Prog. Oceanogr., 56, 419433, doi:10.1016/S0079-6611(03)00033-8.

    • Search Google Scholar
    • Export Citation
  • Sheen, K., and et al. , 2014: Eddy-induced variability in Southern Ocean abyssal mixing on climatic timescales. Nat. Geosci., 7, 577–582, doi:10.1038/ngeo2200.

    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., , and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049, doi:10.1175/2008JPO3920.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, doi:10.5670/oceanog.2012.39.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., , and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. J. Geophys. Res., 114, C11019, doi:10.1029/2008JC005248.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , J. M. Toole, , and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., , and L. C. St. Laurent, 2011: Turbulence and diapycnal mixing over the East Pacific Rise crest near 10°N. Geophys. Res. Lett., 38, L15613, doi:10.1029/2011GL048207.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., , K. L. Polzin, , and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, doi:10.1126/science.264.5162.1120.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 1854–1872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , A. C. N. Garabato, , and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , K. L. Polzin, , A. C. Naveira Garabato, , K. L. Sheen, , and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 1466–1492, doi:10.1175/JPO-D-12-0154.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., , L. D. Talley, , and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., , L. Padman, , T. Dillon, , M. Levine, , C. Paulson, , and R. Pinkel, 1993: The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269286, doi:10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winkel, D. P., , M. C. Gregg, , and T. B. Sanford, 2002: Patterns of shear and turbulence across the Florida Current. J. Phys. Oceanogr., 32, 32693285, doi:10.1175/1520-0485(2002)032<3269:POSATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L. X., , Z. Jing, , S. Riser, , and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 163 15
PDF Downloads 162 162 23

Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Finescale methods are currently being applied to estimate the mean turbulent dissipation rate and diffusivity on regional and global scales. This study evaluates finescale estimates derived from isopycnal strain by comparing them with average microstructure profiles from six diverse environments including the equator, above ridges, near seamounts, and in strong currents. The finescale strain estimates are derived from at least 10 nearby Argo profiles (generally <60 km distant) with no temporal restrictions, including measurements separated by seasons or decades. The absence of temporal limits is reasonable in these cases, since the authors find the dissipation rate is steady over seasonal time scales at the latitudes being considered (0°–30° and 40°–50°). In contrast, a seasonal cycle of a factor of 2–5 in the upper 1000 m is found under storm tracks (30°–40°) in both hemispheres. Agreement between the mean dissipation rate calculated using Argo profiles and mean from microstructure profiles is within a factor of 2–3 for 96% of the comparisons. This is both congruous with the physical scaling underlying the finescale parameterization and indicates that the method is effective for estimating the regional mean dissipation rates in the open ocean.

Corresponding author address: Caitlin B. Whalen, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. E-mail: cwhalen@ucsd.edu

Abstract

Finescale methods are currently being applied to estimate the mean turbulent dissipation rate and diffusivity on regional and global scales. This study evaluates finescale estimates derived from isopycnal strain by comparing them with average microstructure profiles from six diverse environments including the equator, above ridges, near seamounts, and in strong currents. The finescale strain estimates are derived from at least 10 nearby Argo profiles (generally <60 km distant) with no temporal restrictions, including measurements separated by seasons or decades. The absence of temporal limits is reasonable in these cases, since the authors find the dissipation rate is steady over seasonal time scales at the latitudes being considered (0°–30° and 40°–50°). In contrast, a seasonal cycle of a factor of 2–5 in the upper 1000 m is found under storm tracks (30°–40°) in both hemispheres. Agreement between the mean dissipation rate calculated using Argo profiles and mean from microstructure profiles is within a factor of 2–3 for 96% of the comparisons. This is both congruous with the physical scaling underlying the finescale parameterization and indicates that the method is effective for estimating the regional mean dissipation rates in the open ocean.

Corresponding author address: Caitlin B. Whalen, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. E-mail: cwhalen@ucsd.edu
Save