• Aagaard, K., , L. K. Coachman, , and E. C. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28A, 529545, doi:10.1016/0198-0149(81)90115-1.

    • Search Google Scholar
    • Export Citation
  • Aksenov, Y., , S. Bacon, , A. C. Coward, , and N. P. Holliday, 2010: Polar outflow from the Arctic Ocean: A high resolution model study. J. Mar. Syst., 83, 1437, doi:10.1016/j.jmarsys.2010.06.007.

    • Search Google Scholar
    • Export Citation
  • Andersson, L., , B. Rudels, , and G. Walin, 1982: Computations of heat flux through the ocean surface as a function of temperature. Tellus, 34, 196198, doi:10.1111/j.2153-3490.1982.tb01807.x.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., , and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581591, doi:10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beszczynska-Möller, A., , E. Fahrbach, , U. Schauer, , and E. Hansen, 2012: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci., 69, 852863, doi:10.1093/icesjms/fss056.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., , L. D. Talley, , and P. E. Robbins, 2008: Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res.,113, C04026, doi:10.1029/2006JC004063.

  • Brodeau, L., , B. Barnier, , A.-M. Treguier, , T. Penduff, , and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., 2007: The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep-Sea Res. II, 54, 25782598, doi:10.1016/j.dsr2.2007.08.018.

    • Search Google Scholar
    • Export Citation
  • de Steur, L., , E. Hansen, , R. Gerdes, , M. J. Karcher, , E. Fahrbach, , and J. Holfort, 2009: Freshwater fluxes in the East Greenland Current: A decade of observations. Geophys. Res. Lett.,36, L23611, doi:10.1029/2009GL041278.

  • Döös, K., , J. Nilsson, , J. Nycander, , L. Brodeau, , and M. Ballarotta, 2012: The World Ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460, doi:10.1175/JPO-D-11-0163.1.

    • Search Google Scholar
    • Export Citation
  • Eldevik, T., , and J. E. Ø. Nilsen, 2013: The Arctic–Atlantic thermohaline circulation. J. Climate, 26, 86988705, doi:10.1175/JCLI-D-13-00305.1.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., , and G. Madec, 2008: Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci. Discuss., 5, 281325, doi:10.5194/osd-5-281-2008.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., , and M. A. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, doi:10.1029/97JC00480.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., , Y. Grégoris, , and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 179–16 193, doi:10.1029/JC095iC09p16179.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., , J. D. Zika, , T. J. McDougall, , B. M. Sloyan, , and F. Laliberté, 2014a: The representation of ocean circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr., 44, 17351750, doi:10.1175/JPO-D-13-0213.1.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., , J. D. Zika, , B. M. Sloyan, , T. J. McDougall, , and P. C. McIntosh, 2014b: A thermohaline inverse method for estimating diathermohaline circulation and mixing. J. Phys. Oceanogr., 44, 2681–2697, doi:10.1175/JPO-D-14-0039.1.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., , J. Nilsson, , and J. Nycander, 2014: Water mass transformation in salinity–temperature space. J. Phys. Oceanogr., 44, 25472568, doi:10.1175/JPO-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and et al. , 2007: Water properties and circulation in Arctic Ocean models. J. Geophys. Res., 112, C04S03, doi:10.1029/2006JC003642.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., , G. Madec, , and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, doi:10.1175/2007JPO3464.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pole de modélisation 27, 367 pp. [Available online at www.nemo-ocean.eu/About-NEMO/Reference-manuals.]

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Levy, 1998: OPA 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace Note du Pole de modélisation 11, 97 pp. [Available online at www.nemo-ocean.eu/Media/Files/Doc_OPA8.1.]

  • Marsh, R., , S. A. Josey, , A. De Nurser, , B. A. Cuevas, , and A. C. Coward, 2005: Water mass transformation in the North Atlantic over 1985-2002 simulated in an eddy-permitting model. Ocean Sci., 1, 127144, doi:10.5194/os-1-127-2005.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, doi:10.1357/0022240973224373.

  • Marshall, J., , D. Jamous, , and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., , and M. Steele, 2001: Future of the Arctic sea ice cover: Implications of an Antarctic analog. Geophys. Res. Lett., 28, 307310, doi:10.1029/2000GL011549.

    • Search Google Scholar
    • Export Citation
  • Maze, G., , G. Forget, , M. Buckley, , J. Marshall, , and I. Cerovecki, 2009: Using transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic Eighteen Degree Water formation. J. Phys. Oceanogr., 39, 18181835, doi:10.1175/2009JPO3985.1.

    • Search Google Scholar
    • Export Citation
  • Melling, H., and et al. , 2008: Fresh-water fluxes via Pacific and Arctic outflows across the Canadian polar shelf. Arctic–Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 193–247.

  • Münchow, A., , and H. Melling, 2008: Ocean current observations from Nares Strait to the west of Greenland: Interannual to tidal variability and forcing. J. Mar. Res., 66, 801833, doi:10.1357/002224008788064612.

    • Search Google Scholar
    • Export Citation
  • Münchow, A., , K. K. Falkner, , and H. Melling, 2007: Spatial continuity of measured seawater and tracer fluxes through Nares Strait, a dynamically wide channel bordering the Canadian Archipelago. J. Mar. Res., 65, 759788, doi:10.1357/002224007784219048.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., 1996: Mixing in the ocean produced by tropical cyclones. Tellus, 48A, 342355, doi:10.1034/j.1600-0870.1996.t01-1-00010.x.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., , G. Björk, , B. Rudels, , P. Winsor, , and D. J. Torres, 2008: Liquid freshwater transport and Polar Surface Water characteristics in the East Greenland Current during the AO-02 Oden expedition. Prog. Oceanogr., 78, 4557, doi:10.1016/j.pocean.2007.06.002.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., , and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pemberton, P., , J. Nilsson, , and H. E. Markus Meier, 2014: Arctic Ocean freshwater composition, pathways and transformations from a passive tracer simulation. Tellus, 66A, 23988, doi:10.3402/tellusa.v66.23988.

    • Search Google Scholar
    • Export Citation
  • Prinsenberg, S., , J. Hamilton, , I. Peterson, , and R. Pettipas, 2009: Observing and interpreting the seasonal variability of the oceanographic fluxes passing through Lancaster Sound of the Canadian Arctic Archipelago. Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, J. C. J. Nihoul and A. G. Kostianoy, Eds., Springer, 125–143.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., , and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105, 23 92723 942, doi:10.1029/2000JC900089.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., 1987: On the mass balance of the Polar Ocean, with special emphasis on the Fram Strait. Nor. Polarinst. Skr., 188, 1–57.

  • Rudels, B., 1989: The formation of Polar Surface Water, the ice export and the exchanges through the Fram Strait. Prog. Oceanogr., 22, 205248, doi:10.1016/0079-6611(89)90013-X.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., 2009: Arctic Ocean circulation. Encyclopedia of Ocean Science, 2nd ed. J. H. Steele, Ed., Academic Press, 211–225.

  • Rudels, B., 2010: Constraints on exchanges in the Arctic Mediterranean—Do they exist and can they be of use? Tellus, 62A, 109122, doi:10.1111/j.1600-0870.2009.00425.x.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., , L. G. Anderson, , and E. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101, 88078821, doi:10.1029/96JC00143.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., , E. P. Jones, , U. Schauer, , and P. Eriksson, 2004: Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res., 23, 181208, doi:10.1111/j.1751-8369.2004.tb00007.x.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., , M. Marnela, , and P. Eriksson, 2008: Constraints on estimating mass, heat and freshwater transports in the Arctic Ocean: An exercise. Arctic–Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 315–341.

  • Schauer, U., , A. Beszczynska-Möller, , W. Walczowski, , E. Fahrbach, , J. Piechura, , and E. Hansen, 2008: Variation of measured heat flow through the Fram Strait between 1997 and 2006. Arctic–Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 65–85.

  • Simmons, H. L., , S. R. Jayne, , L. C. S. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., , R. Ingvaldsen, , J. E. Ø. Nilsen, , and O. Skagseth, 2010: Heat in the Barents Sea: Transport, storage, and surface fluxes. Ocean Sci., 6, 219234, doi:10.5194/os-6-219-2010.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., 1993: Conversion among North Atlantic surface water types. Tellus, 45A, 7279, doi:10.1034/j.1600-0870.1993.00006.x.

  • Speer, K. G., , and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, doi:10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , J. H. Morison, , and T. B. Curtin, 1995: Halocline water formation in the Barents Sea. J. Geophys. Res., 100, 881–894, doi:10.1029/94JC02310.

    • Search Google Scholar
    • Export Citation
  • Steele, M., and et al. , 2001: Adrift in the Beaufort Gyre: A model intercomparison. Geophys. Res. Lett., 28, 29352938, doi:10.1029/2001GL012845.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., 1985: On the hydrographic and ice conditions in the northern North Atlantic during different phases of a glaciation cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol., 50, 303321, doi:10.1016/0031-0182(85)90074-4.

    • Search Google Scholar
    • Export Citation
  • Tartinville, B., , J.-M. Campin, , T. Fichefet, , and H. Goosse, 2001: Realistic representation of the surface freshwater flux in an ice–ocean general circulation model. Ocean Modell., 3, 95108, doi:10.1016/S1463-5003(01)00003-8.

    • Search Google Scholar
    • Export Citation
  • Tsubouchi, T., and et al. , 2012: The Arctic Ocean in summer: A quasi-synoptic inverse estimate of boundary fluxes and water mass transformation. J. Geophys. Res.,117, C01024, doi:10.1029/2011JC007174.

  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693, doi:10.1175/1520-0485(1986)016<0680:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29, 128136, doi:10.1111/j.2153-3490.1977.tb00716.x.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., , K. Aagaard, , and T. J. Weingartner, 2005: Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett.,32, L04601, doi:10.1029/2004GL021880.

  • Worthington, L. V., 1981: The water masses of the world ocean: some results of a fine-scale census. Evolution of Physical Oceanography, C. Wunsch and B. A. Warren, Eds., MIT Press, 42–69.

  • Zika, J. D., , M. H. England, , and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., , W. P. Sijp, , and M. H. England, 2013: Vertical heat transport by ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 20952112, doi:10.1175/JPO-D-12-0179.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 216 46
PDF Downloads 134 134 31

Arctic Ocean Water Mass Transformation in S–T Coordinates

View More View Less
  • 1 Department of Meteorology, Stockholm University, Stockholm, and Oceanographic Research Unit, Swedish Meteorological and Hydrological Institute, Gothenburg, Sweden
  • | 2 Department of Meteorology, Stockholm University, Stockholm, Sweden
  • | 3 Institute for Coastal Research, Helmholtz Zentrum Geesthacht, Geesthacht, Germany
  • | 4 Department of Meteorology, Stockholm University, Stockholm, and Oceanographic Research Unit, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
© Get Permissions
Restricted access

Abstract

In this paper, water mass transformations in the Arctic Ocean are studied using a recently developed salinity–temperature (ST) framework. The framework allows the water mass transformations to be succinctly quantified by computing the surface and internal diffusive fluxes in ST coordinates. This study shows how the method can be applied to a specific oceanic region, in this case the Arctic Ocean, by including the advective exchange of water masses across the boundaries of the region. Based on a simulation with a global ocean circulation model, the authors examine the importance of various parameterized mixing processes and surface fluxes for the transformation of water across isohaline and isothermal surfaces in the Arctic Ocean. The model-based results reveal a broadly realistic Arctic Ocean where the inflowing Atlantic and Pacific waters are primarily cooled and freshened before exiting back to the North Atlantic. In the model, the water mass transformation in the T direction is primarily accomplished by the surface heat flux. However, the surface freshwater flux plays a minor role in the transformation of water toward lower salinities, which is mainly driven by a downgradient mixing of salt in the interior ocean. Near the freezing line, the seasonal melt and growth of sea ice influences the transformation pattern.

Denotes Open Access content.

Corresponding author address: Per Pemberton, Department of Meteorology, Stockholm University, SE-106 91 Stockholm, Sweden. E-mail: per.pemberton@smhi.se

Abstract

In this paper, water mass transformations in the Arctic Ocean are studied using a recently developed salinity–temperature (ST) framework. The framework allows the water mass transformations to be succinctly quantified by computing the surface and internal diffusive fluxes in ST coordinates. This study shows how the method can be applied to a specific oceanic region, in this case the Arctic Ocean, by including the advective exchange of water masses across the boundaries of the region. Based on a simulation with a global ocean circulation model, the authors examine the importance of various parameterized mixing processes and surface fluxes for the transformation of water across isohaline and isothermal surfaces in the Arctic Ocean. The model-based results reveal a broadly realistic Arctic Ocean where the inflowing Atlantic and Pacific waters are primarily cooled and freshened before exiting back to the North Atlantic. In the model, the water mass transformation in the T direction is primarily accomplished by the surface heat flux. However, the surface freshwater flux plays a minor role in the transformation of water toward lower salinities, which is mainly driven by a downgradient mixing of salt in the interior ocean. Near the freezing line, the seasonal melt and growth of sea ice influences the transformation pattern.

Denotes Open Access content.

Corresponding author address: Per Pemberton, Department of Meteorology, Stockholm University, SE-106 91 Stockholm, Sweden. E-mail: per.pemberton@smhi.se
Save