• Aiki, H., , and K. J. Richards, 2008: Energetics of the global ocean: The role of layer-thickness form drag. J. Phys. Oceanogr., 38, 18451869, doi:10.1175/2008JPO3820.1.

    • Search Google Scholar
    • Export Citation
  • Bane, J. M., , and D. A. Brooks, 1979: Gulf Stream meanders along the continental margin from the Florida Straits to Cape Hatteras. Geophys. Res. Lett., 6, 280282, doi:10.1029/GL006i004p00280.

    • Search Google Scholar
    • Export Citation
  • Bane, J. M., , D. A. Brooks, , and K. R. Lorenson, 1981: Synoptic observations of the three-dimensional structure and propagation of Gulf Stream meanders along the Carolina continental margin. J. Geophys. Res., 86, 64116425, doi:10.1029/JC086iC07p06411.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., , C. W. Boning, , B. Brugge, , and D. Stammer, 1994: On the generation and role of eddy variability in the central North Atlantic Ocean. J. Geophys. Res., 99, 20 38120 391, doi:10.1029/94JC01654.

    • Search Google Scholar
    • Export Citation
  • Brooks, D. A., , and J. M. Bane, 1981: Gulf Stream fluctuations and meanders over the Onslow Bay upper continental shelf. J. Phys. Oceanogr., 11, 247256, doi:10.1175/1520-0485(1981)011<0247:GSFAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, D. A., , and J. M. Bane, 1983: Gulf Stream meanders off North Carolina during winter and summer, 1979. J. Geophys. Res., 88, 46334650, doi:10.1029/JC088iC08p04633.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. H., , and P. P. Niiler, 1977: Energetics of the Florida Current. J. Mar. Res., 35, 163191.

  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., , G. R. Flierl, , and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, doi:10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., 1986: The effect of the New England seamounts on Gulf Stream meandering as observed from satellite IR imagery. J. Phys. Oceanogr., 16, 386389, doi:10.1175/1520-0485(1986)016<0386:TEOTNE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., , and D. R. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, doi:10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., , and J. M. Bane, 1985: Subsurface energetics of the Gulf Stream near the Charleston Bump. J. Phys. Oceanogr., 15, 17711789, doi:10.1175/1520-0485(1985)015<1771:SEOTGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., , and J. M. Bane, 1989: Gulf Stream dynamics. Part II: Eddy energetics at 73°W. J. Phys. Oceanogr., 19, 15741587, doi:10.1175/1520-0485(1989)019<1574:GSDPIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., , and P.-Y. L. Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16 60316 622, doi:10.1029/2000JC000205.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., 1987: A model for the inertial recirculation of a gyre. J. Mar. Res., 45, 601634, doi:10.1357/002224087788326821.

  • Greatbatch, R. J., , X. Zhai, , M. Claus, , L. Czeschel, , and W. Rath, 2010a: Transport driven by eddy momentum fluxes in the Gulf Stream Extension region. Geophys. Res. Lett.,37, L24401, doi:10.1029/2010GL045473.

  • Greatbatch, R. J., , X. Zhai, , J.-D. Kohlmann, , and L. Czeschel, 2010b: Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data. Ocean Dyn.,60, 617–628, doi:10.1007/s10236-010-0282-6.

  • Grooms, I., , L.-P. Nadeau, , and K. S. Smith, 2013: Mesoscale eddy energy locality in an idealized ocean model. J. Phys. Oceanogr., 43, 19111923, doi:10.1175/JPO-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1986: Assessing the energetics and dynamics of the Gulf Stream at 68°W from moored current measurements. J. Mar. Res., 44, 423433, doi:10.1357/002224086788403033.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., , and H. Stommel, 1985: On the relation between the deep circulation and the Gulf Stream. Deep-Sea Res., 32, 11811193, doi:10.1016/0198-0149(85)90002-0.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363392, doi:10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., , and L. B. Lin, 1975a: On the generation of mesoscale eddies and their contribution to the oceanic general circulation. I. A preliminary numerical experiment. J. Phys. Oceanogr., 5, 642657, doi:10.1175/1520-0485(1975)005<0642:OTGOME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., , and L. B. Lin, 1975b: On the generation of mesoscale eddies and their contribution to the oceanic general circulation. II. A parameter study. J. Phys. Oceanogr., 5, 658669, doi:10.1175/1520-0485(1975)005<0658:OTGOME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hood, C. A., , and J. M. Bane, 1983: Subsurface energetics of the Gulf Stream cyclonic frontal zone off Onslow Bay, North Carolina. J. Geophys. Res., 88, 46514662, doi:10.1029/JC088iC08p04651.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., , E. J. Metzger, , P. J. Hogan, , C. E. Tilburg, , and J. F. Shriver, 2008: Steering of upper ocean currents and fronts by the topographically constrained abyssal circulation. Dyn. Atmos. Oceans, 45, 102134, doi:10.1016/j.dynatmoce.2008.06.003.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., , J. Sheinbaum, , B. Barnier, , and J. M. Molines, 2009: The mesoscale variability in the Caribbean Sea. Part II: Energy sources. Ocean Modell., 26, 226239, doi:10.1016/j.ocemod.2008.10.006.

    • Search Google Scholar
    • Export Citation
  • Kang, D., , and O. B. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, doi:10.1175/2010JPO4497.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., , and O. B. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, doi:10.1175/JPO-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., , and E. N. Curchitser, 2013: Gulf Stream eddy characteristics in a high-resolution ocean model. J. Geophys. Res. Oceans, 118, 44744487, doi:10.1002/jgrc.20318.

    • Search Google Scholar
    • Export Citation
  • Kontoyiannis, H., , and D. R. Watts, 1994: Observations on the variability of the Gulf Stream path between 74° and 70°W. J. Phys. Oceanogr., 24, 19992013, doi:10.1175/1520-0485(1994)024<1999:OOTVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., , and V. T. Nguyen, 2009: Calculating energy flux in internal solitary waves with an application to reflectance. J. Phys. Oceanogr., 39, 559580, doi:10.1175/2008JPO3882.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lee, T., , and P. Cornillon, 1996: Propagation of Gulf Stream meanders between 74° and 70°W. J. Phys. Oceanogr., 26, 205224, doi:10.1175/1520-0485(1996)026<0205:POGSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T. N., , and E. Waddell, 1983: On Gulf Stream variability and meanders over the Blake Plateau at 30°N. J. Geophys. Res., 88, 46174631, doi:10.1029/JC088iC08p04617.

    • Search Google Scholar
    • Export Citation
  • Lee, T. N., , J. A. Yoder, , and L. P. Atkinson, 1991: Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. J. Geophys. Res., 96, 22 19122 205, doi:10.1029/91JC02450.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R. V., 1979: Satellite observations of the influence of bottom topography on the seaward deflection of the Gulf Stream off Charleston, South Carolina. J. Phys. Oceanogr., 9, 483497, doi:10.1175/1520-0485(1979)009<0483:SOOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luther, M. E., , and J. M. Bane Jr., 1985: Mixed instabilities in the Gulf Stream over the continental slope. J. Phys. Oceanogr., 15, 323, doi:10.1175/1520-0485(1985)015<0003:MIITGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., 1984: Eddy-mean-flow interaction in a barotropic ocean model. Quart. J. Roy. Meteor. Soc., 110, 573590, doi:10.1002/qj.49711046502.

    • Search Google Scholar
    • Export Citation
  • Miller, J. L., 1994: Fluctuations of Gulf Stream frontal position between Cape Hatteras and the Straits of Florida. J. Geophys. Res., 99, 5057–5064, doi:10.1029/93JC03484.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., 2008: Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc. London, A366, 24912510, doi:10.1098/rsta.2008.0058.

    • Search Google Scholar
    • Export Citation
  • Olson, D. B., , R. W. Schmitt, , M. Kennelly, , and T. M. Joyce, 1983: Gulf Stream frontal statistics from Florida Straits to Cape Hatteras derived from satellite and historical data. J. Geophys. Res., 88, 45694577, doi:10.1029/JC088iC08p04569.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: Computations of the eddy heat and density transports across the Gulf Stream. Tellus, 16, 5563, doi:10.1111/j.2153-3490.1964.tb00143.x.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1969: The influence of bottom topography on the stability of jets in a baroclinic fluid. J. Atmos. Sci., 26, 12161232, doi:10.1175/1520-0469(1969)026<1216:TIOBTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., , and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, doi:10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1987: On the energetics of the Gulf Stream at 73°W. J. Mar. Res., 45, 5982, doi:10.1357/002224087788400918.

  • Roullet, G., , X. Capet, , and G. Maze, 2014: Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett.,41, 1651–1656, doi:10.1002/2013GL059004.

  • Savidge, D. K., 2004: Gulf Stream meander propagation past Cape Hatteras. J. Phys. Oceanogr., 34, 20732085, doi:10.1175/1520-0485(2004)034<2073:GSMPPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., , and P. P. Niiler, 1969: A note on the kinetic energy exchange between fluctuations and mean flow in the surface layer of the Florida Current. Tellus, 21, 814819, doi:10.1111/j.2153-3490.1969.tb00487.x.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Thoppil, P. G., , J. G. Richman, , and P. J. Hogan, 2011: Energetics of a global ocean circulation model compared to observations. Geophys. Res. Lett.,38, L15607, doi:10.1029/2011GL048347.

  • Tracey, C. E., , and D. R. Watts, 1986: On Gulf Stream meander characteristics near Cape Hatteras. J. Geophys. Res., 91, 75877602, doi:10.1029/JC091iC06p07587.

    • Search Google Scholar
    • Export Citation
  • Von Storch, J.-S., , C. Eden, , I. Fast, , H. Haak, , D. Hernandez-Deckers, , E. Maier-Reimer, , J. Marotzke, , and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , and S. R. Jayne, 2011: Eddy-mean flow interaction in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Watts, D. R., , and W. E. Johns, 1982: Gulf Stream meanders: Observations on propagation and growth. J. Geophys. Res., 87, 94679476, doi:10.1029/JC087iC12p09467.

    • Search Google Scholar
    • Export Citation
  • Webster, F., 1961: The effect of meanders on the kinetic energy balance of the Gulf Stream. Tellus, 13, 392401, doi:10.1111/j.2153-3490.1961.tb00100.x.

    • Search Google Scholar
    • Export Citation
  • Webster, F., 1965: Measurements of eddy fluxes of momentum in the surface layer of the Gulf Stream. Tellus, 17, 239245, doi:10.1111/j.2153-3490.1965.tb01415.x.

    • Search Google Scholar
    • Export Citation
  • Xie, L., , X. Liu, , and L. J. Pietrafesa, 2007: Effect of bathymetric curvature on Gulf Stream instability in the vicinity of the Charleston Bump. J. Phys. Oceanogr., 37, 452475, doi:10.1175/JPO2995.1.

    • Search Google Scholar
    • Export Citation
  • Xue, H., , and G. Mellor, 1993: Instability of the Gulf Stream front in the South Atlantic Bight. J. Phys. Oceanogr., 23, 23262350, doi:10.1175/1520-0485(1993)023<2326:IOTGSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95103, doi:10.1175/JPO-D-12-021.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 191 18
PDF Downloads 169 169 21

Energetics of Eddy–Mean Flow Interactions in the Gulf Stream Region

View More View Less
  • 1 Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
© Get Permissions
Restricted access

Abstract

A detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a high-resolution multidecadal regional ocean model simulation. The energy equations for the time-mean and time-varying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.

Corresponding author address: Dujuan Kang, Department of Environmental Sciences, Rutgers University, 14 College Farm Rd., New Brunswick, NJ 08901. E-mail: dujuan@esm.rutgers.edu

Abstract

A detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a high-resolution multidecadal regional ocean model simulation. The energy equations for the time-mean and time-varying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.

Corresponding author address: Dujuan Kang, Department of Environmental Sciences, Rutgers University, 14 College Farm Rd., New Brunswick, NJ 08901. E-mail: dujuan@esm.rutgers.edu
Save