• An, S., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686, doi:10.1175/2008JCLI1701.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., , S. Woolnough, , J. Slingo, , and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202, doi:10.1175/JCLI3319.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., , E. Guilyardi, , G. Madec, , J. Slingo, , and S. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dyn., 29, 575590, doi:10.1007/s00382-007-0249-6.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., , and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , L. Rothstein, , and A. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 21562179, doi:10.1175/1520-0485(1994)024<2156:AHVMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chi, N.-H., , R.-C. Lien, , E. D’Asaro, , and B. Ma, 2014: The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian oscillation events. J. Geophys. Res. Oceans, 119, 46384652, doi:10.1002/2014JC010192.

    • Search Google Scholar
    • Export Citation
  • Contreras, R., 2002: Long-term observations of tropical instability waves. J. Phys. Oceanogr., 32, 27152722, doi:10.1175/1520-0485-32.9.2715.

    • Search Google Scholar
    • Export Citation
  • Cox, M., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10, 11681186, doi:10.1175/1520-0485(1980)010<1168:GAPODW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , W. Large, , J. Tribbia, , P. Gent, , B. Briegleb, , and J. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 23472365, doi:10.1175/JCLI3739.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. Senior, , H. Banks, , J. Gregory, , T. Johns, , J. Mitchell, , and R. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Graham, T., 2014: The importance of eddy permitting model resolution for simulation of the heat budget of tropical instability waves. Ocean Modell., 79, 2132, doi:10.1016/j.ocemod.2014.04.005.

    • Search Google Scholar
    • Export Citation
  • Holmes, R., , L. Thomas, , L. Thompson, , and D. Darr, 2014: Potential vorticity dynamics of tropical instability vortices. J. Phys. Oceanogr., 44, 9951011, doi:10.1175/JPO-D-13-0157.1.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , and E. Siggia, 1994: Turbulent mixing of a passive scalar. Phys. Fluids, 6, 18201837, doi:10.1063/1.868243.

  • Huang, C., , F. Qiao, , and D. Dai, 2014: Evaluating CMIP5 simulations of mixed layer depth during summer. J. Geophys. Res. Oceans, 119, 25682582, doi:10.1002/2013JC009535.

    • Search Google Scholar
    • Export Citation
  • Imada, Y., , and M. Kimoto, 2012: Parameterization of tropical instability waves and examination of their impact on ENSO characteristics. J. Climate, 25, 45684581, doi:10.1175/JCLI-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Inoue, R., , R.-C. Lien, , and J. Moum, 2012: Modulation of equatorial turbulence by a tropical instability wave. J. Geophys. Res.,117, C10009, doi:10.1029/2011JC007767.

  • Jing, Z., , L. Wu, , D. Wu, , and B. Qiu, 2014: Enhanced 2-h–8-day oscillations associated with tropical instability waves. J. Phys. Oceanogr., 44, 19081918, doi:10.1175/JPO-D-13-0189.1.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605, doi:10.1175/JPO2870.1.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , M. Cronin, , W. Kessler, , and D. Shea, 2007: Observed horizontal temperature advection by tropical instability waves. Geophys. Res. Lett.,34, L09604, doi:10.1029/2007GL029416.

  • Kawai, Y., , and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, doi:10.1007/s10872-007-0063-0.

    • Search Google Scholar
    • Export Citation
  • Kennan, S., , and P. Flament, 2000: Observations of a tropical instability vortex. J. Phys. Oceanogr., 30, 22772301, doi:10.1175/1520-0485(2000)030<2277:OOATIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W., , and P. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr., 29, 449464, doi:10.1175/1520-0485(1999)029<0449:VOVMIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W., , and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., doi:10.5065/D6KK98Q6.

  • Large, W., , J. McWilliams, , and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, X., , Y. Chao, , J. McWilliams, , and L.-L. Fu, 2001: A comparison of two vertical-mixing schemes in a Pacific Ocean general circulation model. J. Climate, 14, 13771398, doi:10.1175/1520-0442(2001)014<1377:ACOTVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., , D. Caldwell, , M. Gregg, , and J. Moum, 1995: Turbulence variability at the equator in the central Pacific at the beginning of the 1991–1993 El Nino. J. Geophys. Res., 100, 68816898, doi:10.1029/94JC03312.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., , E. D’Asaro, , and C. Menkes, 2008: Modulation of equatorial turbulence by tropical instability waves. Geophys. Res. Lett.,35, L24607, doi:10.1029/2008GL035860.

  • Lyman, J., , D. Chelton, , R. deSzoeke, , and R. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35, 232254, doi:10.1175/JPO-2668.1.

    • Search Google Scholar
    • Export Citation
  • Lyman, J., , G. Johnson, , and W. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37, 855872, doi:10.1175/JPO3023.1.

    • Search Google Scholar
    • Export Citation
  • Ma, C.-C., , C. Mechoso, , A. Arakawa, , and J. Farrara, 1994: Sensitivity of a coupled ocean–atmosphere model to physical parameterizations. J. Climate, 7, 18831896, doi:10.1175/1520-0442(1994)007<1883:SOACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacDonald, D., , and F. Chen, 2012: Enhancement of turbulence through lateral spreading in a stratified-shear flow: Development and assessment of a conceptual model. J. Geophys. Res.,117, C05025, doi:10.1029/2011JC007484.

  • Marchesiello, P., , X. Capet, , C. Menkes, , and S. Kennan, 2011: Submesoscale dynamics in tropical instability waves. Ocean Modell., 39, 3146, doi:10.1016/j.ocemod.2011.04.011.

    • Search Google Scholar
    • Export Citation
  • Masina, S., , S. Philander, , and A. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean: 2. Generation and energetics of the waves. J. Geophys. Res., 104, 29 637–29 661, doi:10.1029/1999JC900226.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., 2002: Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J. Climate, 15, 26322647, doi:10.1175/1520-0442(2002)015<2632:MLTBOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., and et al. , 1998: The tropical ocean-global atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Menkes, C., , J. Vialard, , S. Kennan, , J. Boulanger, , and G. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865, doi:10.1175/JPO2904.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J., , R.-C. Lien, , A. Perlin, , J. Nash, , M. Gregg, , and P. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, doi:10.1038/ngeo657.

    • Search Google Scholar
    • Export Citation
  • Moum, J., , A. Perlin, , J. Nash, , and M. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 6467, doi:10.1038/nature12363.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., , and S. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perez, R., , M. Cronin, , and W. Kessler, 2010: Tropical cells and a secondary circulation near the northern front of the equatorial Pacific cold tongue. J. Phys. Oceanogr., 40, 20912106, doi:10.1175/2010JPO4366.1.

    • Search Google Scholar
    • Export Citation
  • Peters, H., , M. Gregg, , and J. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 11991218, doi:10.1029/JC093iC02p01199.

    • Search Google Scholar
    • Export Citation
  • Philander, S., 1976: Instabilities of zonal equatorial currents. J. Geophys. Res., 81, 37253735, doi:10.1029/JC081i021p03725.

  • Price, J., , R. Weller, , and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., , and R. Weisberg, 1995: Tropical instability wave kinematics: Observations from the tropical instability wave experiment. J. Geophys. Res., 100, 86778693, doi:10.1029/95JC00305.

    • Search Google Scholar
    • Export Citation
  • Seo, H., , M. Jochum, , R. Murtugudde, , A. Miller, , and J. Roads, 2007: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855, doi:10.1175/JCLI4330.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., , and J. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E., , and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, doi:10.1175/JPO-D-10-05016.1.

    • Search Google Scholar
    • Export Citation
  • Small, R., , K. Richards, , S.-P. Xie, , P. Dutrieux, , and T. Miyama, 2009: Damping of tropical instability waves caused by the action of surface currents on stress. J. Geophys. Res.,114, C04009, doi:10.1029/2008JC005147.

  • Smyth, W., , and J. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, doi:10.1002/2013GL058403.

    • Search Google Scholar
    • Export Citation
  • Thum, N., , S. Esbensen, , D. Chelton, , and M. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15, 33613378, doi:10.1175/1520-0442(2002)015<3361:ASHEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willett, C., , R. Leben, , and M. F. Lavín, 2006: Eddies and tropical instability waves in the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 218238, doi:10.1016/j.pocean.2006.03.010.

    • Search Google Scholar
    • Export Citation
  • Zaron, E., , and J. Moum, 2009: A new look at Richardson number mixing schemes for equatorial ocean modeling. J. Phys. Oceanogr., 39, 26522664, doi:10.1175/2009JPO4133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 16
PDF Downloads 91 91 10

The Modulation of Equatorial Turbulence by Tropical Instability Waves in a Regional Ocean Model

View More View Less
  • 1 Environmental Earth System Science, Stanford University, Stanford, California
© Get Permissions
Restricted access

Abstract

Small-scale turbulent mixing in the upper Equatorial Undercurrent (EUC) of the eastern Pacific cold tongue is a critical component of the SST budget that drives variations in SST on a range of time scales. Recent observations have shown that turbulent mixing within the EUC is modulated by tropical instability waves (TIWs). A regional ocean model is used to investigate the mechanisms through which large-scale TIW circulation modulates the small-scale shear, stratification, and shear-driven turbulence in the EUC. Eulerian analyses of time series taken from both the model and the Tropical Atmosphere Ocean (TAO) array suggest that increases in the zonal shear of the EUC drive increased mixing on the leading edge of the TIW warm phase. A Lagrangian vorticity analysis attributes this increased zonal shear to horizontal vortex stretching driven by the strain in the TIW horizontal velocity field acting on the existing EUC shear. To investigate the impact of horizontal vortex stretching on the turbulent heat flux averaged over a TIW period the effects of periodic TIW strain are included as forcing in a simple 1D mixing model of the EUC. Model runs with TIW forcing show turbulent heat fluxes up to 30% larger than runs without TIW forcing, with the magnitude of the increase being sensitive to the vertical mixing scheme used in the model. These results emphasize the importance of coupling between the large-scale circulation and small-scale turbulence in the equatorial regions, with implications for the SST budget of the equatorial Pacific.

Corresponding author address: R. M. Holmes, Environmental Earth System Science, 473 Via Ortega, Room 140, Stanford University, Stanford, CA 94305. E-mail: rmholmes@stanford.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

Small-scale turbulent mixing in the upper Equatorial Undercurrent (EUC) of the eastern Pacific cold tongue is a critical component of the SST budget that drives variations in SST on a range of time scales. Recent observations have shown that turbulent mixing within the EUC is modulated by tropical instability waves (TIWs). A regional ocean model is used to investigate the mechanisms through which large-scale TIW circulation modulates the small-scale shear, stratification, and shear-driven turbulence in the EUC. Eulerian analyses of time series taken from both the model and the Tropical Atmosphere Ocean (TAO) array suggest that increases in the zonal shear of the EUC drive increased mixing on the leading edge of the TIW warm phase. A Lagrangian vorticity analysis attributes this increased zonal shear to horizontal vortex stretching driven by the strain in the TIW horizontal velocity field acting on the existing EUC shear. To investigate the impact of horizontal vortex stretching on the turbulent heat flux averaged over a TIW period the effects of periodic TIW strain are included as forcing in a simple 1D mixing model of the EUC. Model runs with TIW forcing show turbulent heat fluxes up to 30% larger than runs without TIW forcing, with the magnitude of the increase being sensitive to the vertical mixing scheme used in the model. These results emphasize the importance of coupling between the large-scale circulation and small-scale turbulence in the equatorial regions, with implications for the SST budget of the equatorial Pacific.

Corresponding author address: R. M. Holmes, Environmental Earth System Science, 473 Via Ortega, Room 140, Stanford University, Stanford, CA 94305. E-mail: rmholmes@stanford.edu

This article is included in the Ocean Turbulence Special Collection.

Save