Stochastic Modeling of Coherent Wave Fields over Variable Depth

P. B. Smit Delft University of Technology, Delft, Netherlands

Search for other papers by P. B. Smit in
Current site
Google Scholar
PubMed
Close
,
T. T. Janssen Theiss Research, El Granada, California

Search for other papers by T. T. Janssen in
Current site
Google Scholar
PubMed
Close
, and
T. H. C. Herbers Theiss Research, El Granada, California

Search for other papers by T. H. C. Herbers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Refractive focusing of swell waves can result in fast-scale variations in the wave statistics because of wave interference, which cannot be resolved by stochastic wave models based on the radiative transport equation. Quasi-coherent statistical theory does account for such statistical interferences and the associated wave inhomogeneities, but the theory has thus far been presented in a form that appears incompatible with models based on the radiative transfer equation (RTE). Moreover, the quasi-coherent theory has never been tested against field data, and it is not clear how the coherent information inherent to such models can be used for better understanding coastal wave and circulation dynamics. This study therefore revisits the derivation of quasi-coherent theory to formulate it into a radiative transport equation with a forcing term that accounts for the inhomogeneous part of the wave field. This paper shows how the model can be nested within (or otherwise used in conjunction with) quasi-homogeneous wave models based on the RTE. Through comparison to laboratory data, numerical simulations of a deterministic model, and field observations of waves propagating over a nearshore canyon head, the predictive capability of the model is validated. The authors discuss the interference patterns predicted by the model through evaluation of a complex cross-correlation function and highlight the differences with quasi-homogeneous predictions. These results show that quasi-coherent theory can extend models based on the RTE to resolve coherent interference patterns and standing wave features in coastal areas, which are believed to be important in nearshore circulation and sediment transport.

Current affiliation: NorthWest Research Associates, El Granada, California.

Corresponding author address: P. B. Smit, NorthWest Research Associates, P.O. Box 1533, El Granada, CA 94018. E-mail: pieterbartsmit@gmail.com

Abstract

Refractive focusing of swell waves can result in fast-scale variations in the wave statistics because of wave interference, which cannot be resolved by stochastic wave models based on the radiative transport equation. Quasi-coherent statistical theory does account for such statistical interferences and the associated wave inhomogeneities, but the theory has thus far been presented in a form that appears incompatible with models based on the radiative transfer equation (RTE). Moreover, the quasi-coherent theory has never been tested against field data, and it is not clear how the coherent information inherent to such models can be used for better understanding coastal wave and circulation dynamics. This study therefore revisits the derivation of quasi-coherent theory to formulate it into a radiative transport equation with a forcing term that accounts for the inhomogeneous part of the wave field. This paper shows how the model can be nested within (or otherwise used in conjunction with) quasi-homogeneous wave models based on the RTE. Through comparison to laboratory data, numerical simulations of a deterministic model, and field observations of waves propagating over a nearshore canyon head, the predictive capability of the model is validated. The authors discuss the interference patterns predicted by the model through evaluation of a complex cross-correlation function and highlight the differences with quasi-homogeneous predictions. These results show that quasi-coherent theory can extend models based on the RTE to resolve coherent interference patterns and standing wave features in coastal areas, which are believed to be important in nearshore circulation and sediment transport.

Current affiliation: NorthWest Research Associates, El Granada, California.

Corresponding author address: P. B. Smit, NorthWest Research Associates, P.O. Box 1533, El Granada, CA 94018. E-mail: pieterbartsmit@gmail.com
Save
  • Agnon, Y., and A. Sheremet, 1997: Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech., 345, 79–99, doi:10.1017/S0022112097006137.

    • Search Google Scholar
    • Export Citation
  • Apotsos, A., B. Raubenheimer, S. Elgar, and R. T. Guza, 2008: Testing and calibrating parametric wave transformation models on natural beaches. Coastal Eng., 55, 224–235, doi:10.1016/j.coastaleng.2007.10.002.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and T. H. C. Herbers, 2002: Bragg scattering of random surface gravity waves by irregular sea bed topography. J. Fluid Mech., 451, 1–33, doi:10.1017/S0022112001006218.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., W. C. O’Reilly, T. H. C. Herbers, and P. F. Jessen, 2003: Swell transformation across the continental shelf. Part I: Attenuation and directional broadening. J. Phys. Oceanogr., 33, 1921–1939, doi:10.1175/1520-0485(2003)033<1921:STATCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battjes, J. A., and J. P. F. Janssen, 1978: Energy loss and set-up due to breaking of random waves. Proc. 16th Conf. on Coastal Engineering, Hamburg, Germany, ASCE, 569–587.

  • Berkhoff, J. C. W., N. Booij, and A. C. Radder, 1982: Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Eng., 6, 255–279, doi:10.1016/0378-3839(82)90022-9.

    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.,104, 7649–7666, doi:10.1029/98JC02622.

    • Search Google Scholar
    • Export Citation
  • Dodet, G., X. Bertin, N. Bruneau, A. B. Fortunato, A. Nahon, and A. Roland, 2013: Wave-current interactions in a wave-dominated tidal inlet. J. Geophys. Res. Oceans, 118, 1587–1605, doi:10.1002/jgrc.20146.

    • Search Google Scholar
    • Export Citation
  • Eldeberky, Y., 1996: Nonlinear transformation of wave spectra in the nearshore zone. Ph.D. thesis, Delft University of Technology, 203 pp.

  • Elgar, S., T. H. C. Herbers, and R. T. Guza, 1994: Reflection of ocean surface gravity waves from a natural beach. J. Phys. Oceanogr., 24, 1503–1511, doi:10.1175/1520-0485(1994)024<1503:ROOSGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and R. T. Guza, 1984: Nonlinear effects on shoaling surface gravity waves. Philos. Trans. Roy. Soc., A311, 1–41, doi:10.1098/rsta.1984.0019.

    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 1797–1808, doi:10.1029/JC084iC04p01797.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech., 12, 481–500, doi:10.1017/S0022112062000373.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1974: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor., 6, 107–127, doi:10.1007/BF00232479.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., and M. C. Burton, 1997: Nonlinear shoaling of directionally spread waves on a beach. J. Geophys. Res.,102, 21 101–21 114, doi:10.1029/97JC01581.

    • Search Google Scholar
    • Export Citation
  • Janssen, T. T., T. H. C. Herbers, and J. A. Battjes, 2006: Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. J. Fluid Mech., 552, 393–418, doi:10.1017/S0022112006008743.

    • Search Google Scholar
    • Export Citation
  • Janssen, T. T., T. H. C. Herbers, and J. A. Battjes, 2008: Evolution of ocean wave statistics in shallow water: Refraction and diffraction over seafloor topography. J. Geophys. Res.,113, C03024, doi:10.1029/2007JC004410.

  • Kaihatu, J. M., and J. T. Kirby, 1995: Nonlinear transformation of waves in finite water depth. Phys. Fluids, 7, 1903, doi:10.1063/1.868504.

    • Search Google Scholar
    • Export Citation
  • Komen, G., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Long, R. B., 1973: Scattering of surface waves by an irregular bottom. J. Geophys. Res., 78, 7861–7870, doi:10.1029/JC078i033p07861.

    • Search Google Scholar
    • Export Citation
  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16, 2052–2060, doi:10.1175/1520-0485(1986)016<2052:MEEOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magne, R., K. A. Belibassakis, T. H. C. Herbers, F. Ardhuin, W. C. O’Reilly, and V. Rey, 2007: Evolution of surface gravity waves over a submarine canyon. J. Geophys. Res.,112, C01002, doi:10.1029/2005JC003035.

  • Mandel, L., and E. Wolf, 1995: Optical Coherence and Quantum Optics. Cambridge University Press, 1166 pp.

  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185–204, doi:10.1017/S0022112057000567.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and M. A. Traylor, 1947: Refraction of ocean waves: A process linking underwater topography to beach erosion. J. Geol., 55,1–26, doi:10.1086/625388.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, W. C., and R. T. Guza, 1991: Comparison of spectral refraction and refraction-diffraction wave models. J. Waterw. Port Coastal Ocean Eng., 117, 199–215, doi:10.1061/(ASCE)0733-950X(1991)117:3(199).

    • Search Google Scholar
    • Export Citation
  • O’Reilly, W. C., and R. T. Guza, 1993: A comparison of two spectral wave models in the Southern California Bight. Coastal Eng., 19, 263–282, doi:10.1016/0378-3839(93)90032-4.

    • Search Google Scholar
    • Export Citation
  • Pearman, D. W., T. H. C. Herbers, T. T. Janssen, H. D. van Ettinger, S. A. McIntyre, and P. F. Jessen, 2014: Drifter observations of the effects of shoals and tidal-currents on wave evolution in San Francisco Bight. Cont. Shelf Res., 91, 109–119, doi:10.1016/j.csr.2014.08.011.

    • Search Google Scholar
    • Export Citation
  • Pedersen, H., and O. Lokberg, 1992: Coherence and radiative energy transfer for linear surface gravity waves in water of constant depth. J. Phys., 25A, 5263–5278, doi:10.1088/0305-4470/25/20/009.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417–445, doi:10.1017/S0022112057000233.

  • Salmon, J. E., L. H. Holthuijsen, M. Zijlema, and G. Van Vledder, 2015: Scaling depth-induced wave-breaking in two-dimensional spectral wave models. Ocean Modell.,87, 30–47, doi:10.1016/j.ocemod.2014.12.011.

  • Smit, P. B., and T. T. Janssen, 2013: The evolution of inhomogeneous wave statistics through a variable medium. J. Phys. Oceanogr., 43, 1741–1758, doi:10.1175/JPO-D-13-046.1.

    • Search Google Scholar
    • Export Citation
  • Stelling, G. S., and M. Zijlema, 2003: An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids, 43, 1–23, doi:10.1002/fld.595.

    • Search Google Scholar
    • Export Citation
  • Strichartz, R., 1993: A Guide to Distribution Theory and Fourier Transforms. CRC Press, 224 pp.

  • Thomson, J., S. Elgar, and T. H. C. Herbers, 2005: Reflection and tunneling of ocean waves observed at a submarine canyon. Geophys. Res. Lett.,32, L10602, doi:10.1029/2005GL022834.

  • Thomson, J., S. Elgar, T. H. C. Herbers, B. Raubenheimer, and R. T. Guza, 2007: Refraction and reflection of infragravity waves near submarine canyons. J. Geophys. Res.,112, C10009, doi:10.1029/2007JC004227.

  • Thornton, E. B., and R. T. Guza, 1983: Transformation of wave height distribution. J. Geophys. Res.,88, 5925–5938, doi:10.1029/JC088iC10p05925.

    • Search Google Scholar
    • Export Citation
  • Van der Vorst, H. A., 1992: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13, 631–644, doi:10.1137/0913035.

    • Search Google Scholar
    • Export Citation
  • Ville, J., 1948: Theorie et applications de la notion de signal analytique. Cables Transm.,2A, 61–74.

  • Wigner, E., 1932: On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40, 749, doi:10.1103/PhysRev.40.749.

  • Willebrand, J., 1975: Energy transport in a nonlinear and inhomogeneous random gravity wave field. J. Fluid Mech., 70, 113–126, doi:10.1017/S0022112075001929.

    • Search Google Scholar
    • Export Citation
  • Zijlema, M., G. S. Stelling, and P. B. Smit, 2011: SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Eng., 58, 992–1012, doi:10.1016/j.coastaleng.2011.05.015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 109 8
PDF Downloads 222 72 9