• Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 997–1018, doi:10.1175/JPO2877.1.

    • Search Google Scholar
    • Export Citation
  • Armenio, V., and S. Sarkar, 2002: An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459, 142, doi:10.1017/S0022112002007851.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, D. S. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 12021219, doi:10.1175/JPO2888.1.

    • Search Google Scholar
    • Export Citation
  • Barry, M. E., G. N. Ivey, K. B. Winters, and J. Imberger, 2001: Measurements of diapycnal diffusivities in stratified fluids. J. Fluid Mech., 442, 267291, doi:10.1017/S0022112001005080.

    • Search Google Scholar
    • Export Citation
  • Becherer, J. K., and L. Umlauf, 2011: Boundary mixing in lakes: 1. Modeling the effect of shear-induced convection. J. Geophys. Res.,116, C10017, doi:10.1029/2011JC007119.

  • Buijsman, M., S. Legg, and J. M. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, doi:10.1175/JPO-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, doi:10.1126/science.1069803.

    • Search Google Scholar
    • Export Citation
  • Chalamalla, V. K., B. Gayen, A. Scotti, and S. Sarkar, 2013: Turbulence during the reflection of internal gravity waves at critical and near-critical slopes. J. Fluid Mech., 729, 4768, doi:10.1017/jfm.2013.240.

    • Search Google Scholar
    • Export Citation
  • Dalziel, S. B., M. D. Patterson, C. P. Caulfield, and I. A. Coomaraswamy, 2008: Mixing efficiency in high-aspect-ratio Rayleigh-Taylor experiments. Phys. Fluids,20, 065106, doi:10.1063/1.2936311.

  • Davies Wykes, M. S., and S. B. Dalziel, 2014: Efficient mixing in stratified flows: Experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech., 756, 10271057, doi:10.1017/jfm.2014.308.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1998: Internal wave reflection and mixing at Fieberling Guyot. J. Geophys. Res., 103, 29772994, doi:10.1029/97JC03205.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2010: Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett.,104, 218502, doi:10.1103/PhysRevLett.104.218502.

  • Gayen, B., and S. Sarkar, 2011a: Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett.,38, L14608, doi:10.1029/2011GL048135.

  • Gayen, B., and S. Sarkar, 2011b: Direct and large-eddy simulations of internal tide generation at a near-critical slope. J. Fluid Mech., 681, 4879, doi:10.1017/jfm.2011.170.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2011c: Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping bottom. Phys. Fluids,23, 101703, doi:10.1063/1.3651359.

  • Gayen, B., S. Sarkar, and J. R. Taylor, 2010: Large eddy simulation of a stratified boundary layer under an oscillatory current. J. Fluid Mech., 643, 233266, doi:10.1017/S002211200999200X.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., G. O. Hughes, and R. W. Griffiths, 2013: Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett.,111, 124301, doi:10.1103/PhysRevLett.111.124301.

  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3, 17601765, doi:10.1063/1.857955.

    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., K. B. Winters, and J. R. Koseff, 2008: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40, 169184, doi:10.1146/annurev.fluid.39.050905.110314.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, doi:10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, doi:10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, doi:10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrie, A. G. W., and S. B. Dalziel, 2011: Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech., 688, 507527, doi:10.1017/jfm.2011.398.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flows over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, doi:10.1175/2008JPO3777.1.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., and T. J. Boyd, 2006: Tidally forced internal waves and overturns observed on a slope: Results from HOME. J. Phys. Oceanogr., 36, 11841201, doi:10.1175/JPO2887.1.

    • Search Google Scholar
    • Export Citation
  • Linden, P. F., 1979: Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn., 13, 323, doi:10.1080/03091927908243758.

  • Lorke, A., F. Peeters, and A. Wüest, 2005: Shear-induced convective mixing in bottom boundary layers on slopes. Limnol. Oceanogr., 50, 16121619, doi:10.4319/lo.2005.50.5.1612.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., L. Umlauf, and V. Mohrholz, 2008: Stratification and mixing on sloping boundaries. Geophys. Res. Lett.,35, L14610, doi:10.1029/2008GL034607.

  • Martin, J. P., and D. L. Rudnick, 2007: Inferences and observations of turbulent dissipation and mixing in the upper ocean at the Hawaiian Ridge. J. Phys. Oceanogr., 37, 476–494, doi:10.1175/JPO2992.1.

    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. M. Schaad, and S. K. Venayagamoorthy, 2013: Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids,25, 076604, doi:10.1063/1.4813809.

  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, doi:10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., and K. Bryan, 2000: Comparison of thermally driven circulation from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr., 30, 590605, doi:10.1175/1520-0485(2000)030<0590:COTDCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and C. P. Caulfield, 2003: Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech., 35, 135167, doi:10.1146/annurev.fluid.35.101101.161144.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rapaka, N. R., B. Gayen, and S. Sarkar, 2013: Tidal conversion and turbulence at a model ridge: Direct and large eddy simulations. J. Fluid Mech., 715, 181209, doi:10.1017/jfm.2012.513.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, doi:10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 1327, doi:10.1063/1.870385.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 1969–1992, doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30, 933954, doi:10.1175/1520-0485(2000)030<0933:LSCAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vreman, B., B. Geurts, and H. Kuerten, 1997: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech., 339, 357390, doi:10.1017/S0022112097005429.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1996: Diascalar flux and the rate of fluid mixing. J. Fluid Mech., 317, 179193, doi:10.1017/S0022112096000717.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and R. Barkan, 2013: Available potential energy density for Boussinesq fluid flow. J. Fluid Mech., 714, 476488, doi:10.1017/jfm.2012.493.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, 5, 31863196, doi:10.1063/1.858675.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 199 16
PDF Downloads 225 156 16

Mixing, Dissipation Rate, and Their Overturn-Based Estimates in a Near-Bottom Turbulent Flow Driven by Internal Tides

View More View Less
  • 1 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
  • | 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, and Scripps Institute of Oceanography, La Jolla, California
Restricted access

Abstract

Direct numerical simulation (DNS) and large-eddy simulation (LES) are employed to study the mixing brought about by convective overturns in a stratified, oscillatory bottom layer underneath internal tides. The phasing of turbulence, the onset and breakdown of convective overturns, and the pathway to irreversible mixing are quantified. Mixing efficiency shows a systematic dependence on tidal phase, and during the breakdown of large convective overturns it is approximately 0.6, a value that is substantially larger than the commonly assumed value of 0.2 used for calculating scalar mixing from the turbulent dissipation rate. Diapycnal diffusivity is calculated using the irreversible diapycnal flux and, for tall overturns of O(50) m, the diffusivity is found to be almost 1000 times higher than the molecular diffusivity. The Thorpe (overturn) length scale is often used as a proxy for the Ozmidov length scale and thus infers the turbulent dissipation rate from overturns. The accuracy of overturn-based estimates of the dissipation rate is assessed for this flow. The Ozmidov length scale LO and Thorpe length scale LT are found to behave differently during a tidal cycle: LT decreases during the convective instability, while LO increases; there is a significant phase lag between the maxima of LT and LO; and finally LT is not linearly related to LO. Thus, the Thorpe-inferred dissipation rates are quite different from the actual values. Interestingly, the ratio of their cycle-averaged values is found to be O(1), a result explained on the basis of available potential energy.

Publisher’s Note: This article was revised on 19 August 2015 to correct the corresponding author’s full affiliations.

Corresponding author address: Sutanu Sarkar, Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92092. E-mail: sarkar@ucsd.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

Direct numerical simulation (DNS) and large-eddy simulation (LES) are employed to study the mixing brought about by convective overturns in a stratified, oscillatory bottom layer underneath internal tides. The phasing of turbulence, the onset and breakdown of convective overturns, and the pathway to irreversible mixing are quantified. Mixing efficiency shows a systematic dependence on tidal phase, and during the breakdown of large convective overturns it is approximately 0.6, a value that is substantially larger than the commonly assumed value of 0.2 used for calculating scalar mixing from the turbulent dissipation rate. Diapycnal diffusivity is calculated using the irreversible diapycnal flux and, for tall overturns of O(50) m, the diffusivity is found to be almost 1000 times higher than the molecular diffusivity. The Thorpe (overturn) length scale is often used as a proxy for the Ozmidov length scale and thus infers the turbulent dissipation rate from overturns. The accuracy of overturn-based estimates of the dissipation rate is assessed for this flow. The Ozmidov length scale LO and Thorpe length scale LT are found to behave differently during a tidal cycle: LT decreases during the convective instability, while LO increases; there is a significant phase lag between the maxima of LT and LO; and finally LT is not linearly related to LO. Thus, the Thorpe-inferred dissipation rates are quite different from the actual values. Interestingly, the ratio of their cycle-averaged values is found to be O(1), a result explained on the basis of available potential energy.

Publisher’s Note: This article was revised on 19 August 2015 to correct the corresponding author’s full affiliations.

Corresponding author address: Sutanu Sarkar, Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92092. E-mail: sarkar@ucsd.edu

This article is included in the Ocean Turbulence Special Collection.

Save