• Allison, I., and S. Qian, 1985: Characteristics of sea ice on the Casey region. ANARE Research Notes 28, Australian Antarctic Data Centre, 4756.

  • Bauer, J., and S. Martin, 1983: A model of grease ice growth in small leads. J. Geophys. Res., 88, 29172925, doi:10.1029/JC088iC05p02917.

    • Search Google Scholar
    • Export Citation
  • Biggs, N. R. T., M. A. Morales Maqueda, and A. J. Willmott, 2000: Polynya flux model solutions incorporating a parameterization for the collection thickness of consolidated new ice. J. Fluid Mech., 408, 179204, doi:10.1017/S0022112099007673.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, doi:10.1175/JCLI-D-11-00290.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, D. B., and S. F. Ackley, 1984: Sea ice structure and biological activity in the Antarctic marginal ice zone. J. Geophys. Res., 89, 20872095, doi:10.1029/JC089iC02p02087.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J., 2000: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2. Subset used: 1990–1999, National Snow and Ice Data Center, accessed 1 February 2014, doi:10.5067/J6JQLS9EJ5HU.

  • Curry, J. A., J. L. Schramm, A. Alam, R. Reeder, T. E. Arbetter, and P. Guest, 2002: Evaluation of data sets used to force sea ice models in the Arctic Ocean. J. Geophys. Res.,107, 8027, doi:10.1029/2000JC000466.

  • Dai, M., H. H. Shen, M. A. Hopkins, and S. F. Ackley, 2004: Wave rafting and the equilibrium pancake ice cover thickness. J. Geophys. Res., 109, C07023, doi:10.1029/2003JC002192.

    • Search Google Scholar
    • Export Citation
  • Daly, S. F., 1994: Evolution of frazil ice in natural water bodies. International Association for Hydraulic Research Working Group on Thermal Regimes: Report on Frazil Ice, Special Rep. 94-23, 11–17.

  • De la Rosa, S., and S. Maus, 2012: Laboratory study of frazil ice accumulation under wave conditions. Cryosphere, 6, 173191, doi:10.5194/tc-6-173-2012.

    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., and Coauthors, 2010: Observations of supercooling and frazil ice formation in the laptev sea coastal polynya. J. Geophys. Res.,115, C05015, doi:10.1029/2009JC005798.

  • Eicken, H., and M. A. Lange, 1989: Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea. J. Geophys. Res., 94, 81938206, doi:10.1029/JC094iC06p08193.

    • Search Google Scholar
    • Export Citation
  • Eicken, H., M. Lensu, M. Leppranta, W. B. Tucker, A. J. Gow, and O. Salmela, 1995: Thickness, structure, and properties of level summer multiyear ice in the Eurasian sector of the Arctic Ocean. J. Geophys. Res., 100, 22 69722 710, doi:10.1029/95JC02188.

    • Search Google Scholar
    • Export Citation
  • Ferry, N., and Coauthors, 2015: Product user manual GLOBAL-REANALYSIS-PHYS-001-004. Marine Environment Monitoring Service, 52 pp. [Available online at http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-004-009-010-011-017.pdf.]

  • Flocco, D., D. Schroeder, D. L. Feltham, and E. C. Hunke, 2012: Impact of melt ponds on arctic sea ice simulations from 1990 to 2007. J. Geophys. Res., 117, C09032, doi:10.1029/2012JC008195.

    • Search Google Scholar
    • Export Citation
  • Gow, A. J., S. F. Ackley, W. F. Weeks, and J. W. Govoni, 1982: Physical and structural characteristics of Antarctic sea ice. Ann. Glaciol., 3, 113117.

    • Search Google Scholar
    • Export Citation
  • Hibler, W., III, 2001: Sea ice fracturing on the large scale. Eng. Fract. Mech., 68, 20132043, doi:10.1016/S0013-7944(01)00035-2.

  • Holland, P. R., and D. L. Feltham, 2005: Frazil dynamics and precipitation in a water column with depth-dependent supercooling. J. Fluid Mech., 530, 101124, doi:10.1017/S002211200400285X.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and A. Proshutinsky, 2007: Role of tides in arctic ocean/ice climate. J. Geophys. Res., 112, C04S06, doi:10.1029/2006JC003643.

    • Search Google Scholar
    • Export Citation
  • Hopkins, M. A., and H. H. Shen, 2001: Simulation of pancake-ice dynamics in a wave field. Ann. Glaciol., 33, 355360, doi:10.3189/172756401781818527.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user’s manual, version 4.1. Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, NM, 76 pp.

  • Hunke, E. C., D. Notz, A. K. Turner, and M. Vancoppenolle, 2011: The multiphase physics of sea ice: A review for model developers. Cryosphere, 5, 9891009, doi:10.5194/tc-5-989-2011.

    • Search Google Scholar
    • Export Citation
  • Jacka, T. H., S. F. Allison, R. Thwaiters, and J. Wilson, 1987: Characteristics of the seasonal sea ice of east Antarctica and comparison with satellite observations. Ann. Glaciol., 9, 8591.

    • Search Google Scholar
    • Export Citation
  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, L10802, doi:10.1029/2012GL051591.

    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., and W. F. Weeks, 1992: Structural characteristics and development of sea ice in the western Ross Sea. Antarct. Sci., 5 (1), 6375.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and A. Bombosch, 1995: Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J. Geophys. Res., 100, 69676981, doi:10.1029/94JC03227.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 1995: A numerical model of arctic leads. J. Geophys. Res., 100, 46534672, doi:10.1029/94JC02348.

  • Kozo, T. L., 1983: Initial model results for arctic mixed layer circulation under a refreezing lead. J. Geophys. Res., 88, 29262934, doi:10.1029/JC088iC05p02926.

    • Search Google Scholar
    • Export Citation
  • Lange, M. A., 1988: Basic properties of Antarctic sea ice as revealed by textural analysis of ice cores. Ann. Glaciol., 10, 95101.

  • Lange, M. A., S. F. Ackley, and P. Wadhams, 1989: Development of sea ice in the Weddell Sea. Ann. Glaciol., 12, 9296.

  • Levine, M. D., C. A. Paulson, J. Simpkins, and S. R. Gard, 1993: Observations from LEADEX, Beaufort Sea, Arctic Ocean, March–April 1992. COAS Data Rep. 153, Oregon State University, Corvallis, OR, 159 pp.

  • Markus, T., 1999: Results from an ECMWF-SSM/I forced mixed layer model of the southern ocean. J. Geophys. Res.,104, 15 603–15 620, doi:10.1029/1999JC900080.

  • Markus, T., and D. Cavalieri, 2000: An enhancement of the NASA team sea ice algorithm. IEEE Trans. Geosci. Remote Sens., 38, 13871398, doi:10.1109/36.843033.

    • Search Google Scholar
    • Export Citation
  • Martin, S., and P. Kauffman, 1981: A field and laboratory study of wave damping by grease ice. J. Glaciol., 27, 283313.

  • Maslowski, W., J. Clement Kinney, M. Higgins, and A. Roberts, 2012: The future of arctic sea ice. Annu. Rev. Earth Planet. Sci., 40, 625654, doi:10.1146/annurev-earth-042711-105345.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., P. M. Barker, R. Feistel, and B. K. Galton-Fenzi, 2014: Melting of ice and sea ice into seawater and frazil ice formation. J. Phys. Oceanogr., 44, 17511775, doi:10.1175/JPO-D-13-0253.1.

    • Search Google Scholar
    • Export Citation
  • McGuinness, M. J., M. J. M. Williams, P. J. Langhorne, C. Purdie, and J. Crook, 2009: Frazil deposition under growing sea ice. J. Geophys. Res., 114, C07014, doi:10.1029/2007JC004414.

    • Search Google Scholar
    • Export Citation
  • Morison, J. H., M. G. McPhee, T. B. Curtin, and C. A. Paulson, 1992: The oceanography of winter leads. J. Geophys. Res., 97, 11 19911 218, doi:10.1029/92JC00684.

    • Search Google Scholar
    • Export Citation
  • Nakawo, M., and N. Sinha, 1984: A note on brine layer spacing of first-year sea ice. Atmos.–Ocean, 22, 193206, doi:10.1080/07055900.1984.9649193.

    • Search Google Scholar
    • Export Citation
  • Omstedt, A., 1985: Modelling frazil ice and grease ice formation in the upper layers of the ocean. Cold Reg. Sci. Technol., 11, 8798, doi:10.1016/0165-232X(85)90009-6.

    • Search Google Scholar
    • Export Citation
  • Omstedt, A., and U. Svensson, 1984: Modeling supercooling and ice formation in a turbulent Ekman layer. J. Geophys. Res., 89, 735744, doi:10.1029/JC089iC01p00735.

    • Search Google Scholar
    • Export Citation
  • Ono, N., 1967: Specific heat and heat of fusion of sea ice. Physics of Snow and Ice: International Conference on Low Temperature Science 1966 Proceedings, Vol. 1, H. Oura, Ed., Institute of Low Temperature Science, 599–610.

  • Petty, A. A., P. R. Holland, and D. L. Feltham, 2014: Sea ice and the ocean mixed layer over the Antarctic shelf seas. Cryosphere,8, 761–783, doi:10.5194/tc-8-761-2014.

  • Schwarzacher, W., 1959: Pack-ice studies in the Arctic Ocean. J. Geophys. Res., 64, 23572367, doi:10.1029/JZ064i012p02357.

  • Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled arctic sea ice volume. J. Geophys. Res., 116, C00D06, doi:10.1029/2011JC007084.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 2001: Turbulence beneath sea ice and leads: A coupled sea ice/large-eddy simulation study. J. Geophys. Res., 106, 24772497, doi:10.1029/1999JC000091.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., 2011: Grease-ice thickness parameterization. Ann. Glaciol., 52, 7782, doi:10.3189/172756411795931840.

  • Smedsrud, L. H., and R. Skogseth, 2006: Field measurements of arctic grease ice properties and processes. Cold Reg. Sci. Technol., 44, 171183, doi:10.1016/j.coldregions.2005.11.002.

    • Search Google Scholar
    • Export Citation
  • Steiner, N., 2001: Introduction of variable drag efficients into sea-ice models. Ann. Glaciol., 33, 181186, doi:10.3189/172756401781818149.

    • Search Google Scholar
    • Export Citation
  • Svensson, U., and A. Omstedt, 1998: Numerical simulations of frazil ice dynamics in the upper layers of the ocean. Cold Reg. Sci. Technol., 28, 2944, doi:10.1016/S0165-232X(98)00011-1.

    • Search Google Scholar
    • Export Citation
  • Tison, J. L., and J. Haren, 1989: Isotopic, chemical and crystallographic characteristics of first-year sea ice from Bried Bay (Princess Ragnhild Coast—Antarctica). Antarct. Sci., 1, 261268, doi:10.1017/S0954102089000386.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. M. Maqueda, 2009: Simulating the mass balance and salinity of arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell., 27, 3353, doi:10.1016/j.ocemod.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., and Coauthors, 2011: Assessment of radiation forcing data sets for large-scale sea ice models in the southern ocean. Deep-Sea Res. II,58, 1237–1249, doi:10.1016/j.dsr2.2010.10.039.

  • Wang, S. M., and J. C. Doering, 2005: Numerical simulation of supercooling process and frazil ice evolution. J. Hydraul. Eng., 131, 889897, doi:10.1061/(ASCE)0733-9429(2005)131:10(889).

    • Search Google Scholar
    • Export Citation
  • Yu, L., Z. Zhang, M. Zhou, S. Zhong, D. Lenschow, H. Hsu, H. Wu, and B. Sun, 2010: Validation of ECMWF and NCEP–NCAR reanalysis data in Antarctica. Adv. Atmos. Sci., 27, 11511168, doi:10.1007/s00376-010-9140-1.

    • Search Google Scholar
    • Export Citation
  • Zib, B. J., X. Dong, B. Xi, and A. Kennedy, 2012: Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, doi:10.1175/JCLI-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 602 273 10
PDF Downloads 234 126 3

Study of the Impact of Ice Formation in Leads upon the Sea Ice Pack Mass Balance Using a New Frazil and Grease Ice Parameterization

View More View Less
  • 1 Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 British Antarctic Survey, Cambridge, United Kingdom
Restricted access

Abstract

Leads are cracks in sea ice that often form because of deformation. During winter months, leads expose the ocean to the cold atmosphere, resulting in supercooling and the formation of frazil ice crystals within the mixed layer. Here the authors investigate the role of frazil ice formation in leads on the mass balance of the sea ice pack through the incorporation of a new module into the Los Alamos sea ice model (CICE). The frazil ice module considers an initial cooling of leads followed by a steady-state formation of uniformly distributed single size frazil ice crystals that precipitate to the ocean surface as grease ice. The grease ice is pushed against one of the lead edges by wind and water drag that the authors represent through a variable collection thickness for new sea ice. Simulations of the sea ice cover in the Arctic and Antarctic are performed and compared to a model that treats leads the same as the open ocean. The processes of ice formation in the new module slow down the refreezing of leads, resulting in a longer period of frazil ice production. The fraction of frazil-derived sea ice increases from 10% to 50%, corresponding better to observations. The new module has higher ice formation rates in areas of high ice concentration and thus has a greater impact within multiyear ice than it does in the marginal seas. The thickness of sea ice in the central Arctic increases by over 0.5 m, whereas within the Antarctic it remains unchanged.

Corresponding author address: Harold D. B. S. Heorton, Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading RG6 6AH, United Kingdom. E-mail: h.heorton@reading.ac.uk

Abstract

Leads are cracks in sea ice that often form because of deformation. During winter months, leads expose the ocean to the cold atmosphere, resulting in supercooling and the formation of frazil ice crystals within the mixed layer. Here the authors investigate the role of frazil ice formation in leads on the mass balance of the sea ice pack through the incorporation of a new module into the Los Alamos sea ice model (CICE). The frazil ice module considers an initial cooling of leads followed by a steady-state formation of uniformly distributed single size frazil ice crystals that precipitate to the ocean surface as grease ice. The grease ice is pushed against one of the lead edges by wind and water drag that the authors represent through a variable collection thickness for new sea ice. Simulations of the sea ice cover in the Arctic and Antarctic are performed and compared to a model that treats leads the same as the open ocean. The processes of ice formation in the new module slow down the refreezing of leads, resulting in a longer period of frazil ice production. The fraction of frazil-derived sea ice increases from 10% to 50%, corresponding better to observations. The new module has higher ice formation rates in areas of high ice concentration and thus has a greater impact within multiyear ice than it does in the marginal seas. The thickness of sea ice in the central Arctic increases by over 0.5 m, whereas within the Antarctic it remains unchanged.

Corresponding author address: Harold D. B. S. Heorton, Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading RG6 6AH, United Kingdom. E-mail: h.heorton@reading.ac.uk
Save