• Adkins, J. F., and D. P. Schrag, 2001: Pore fluid constraints on deep ocean temperature and salinity during the last glacial maximum. Geophys. Res. Lett., 28, 771774, doi:10.1029/2000GL011597.

    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., and D. P. Schrag, 2003: Reconstructing Last Glacial Maximum bottom water salinities from deep-sea sediment pore fluid profiles. Earth Planet. Sci. Lett., 216, 109123, doi:10.1016/S0012-821X(03)00502-8.

    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature and δ18O of the glacial deep ocean. Science, 298, 17691773, doi:10.1126/science.1076252.

    • Search Google Scholar
    • Export Citation
  • Ascher, U. M., S. J. Ruuth, and B. T. R. Wetton, 1995: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal., 32, 797823, doi:10.1137/0732037.

    • Search Google Scholar
    • Export Citation
  • Bard, E., B. Hamelin, and R. G. Fairbanks, 1990a: U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years. Nature, 346, 456458, doi:10.1038/346456a0.

    • Search Google Scholar
    • Export Citation
  • Bard, E., B. Hamelin, R. G. Fairbanks, and A. Zindler, 1990b: Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345, 405410, doi:10.1038/345405a0.

    • Search Google Scholar
    • Export Citation
  • Bard, E., B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, and F. Rougerie, 1996: Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382, 241244, doi:10.1038/382241a0.

    • Search Google Scholar
    • Export Citation
  • Bellman, R. E., 1957: Dynamic Programming. Princeton University Press, 384 pp.

  • Berner, R. A., 1980: Early Diagenesis: A Theoretical Approach. Princeton University Press, 241 pp.

  • Boudreau, B. P., 1997: Diagenetic Models and Their Implementation: Modelling Transport and Reaction in Aquatic Sediments. Springer-Verlag, 414 pp.

  • Broecker, W., and S. Barker, 2007: A 190‰ drop in atmosphere’s Δ14C during the “Mystery Interval” (17.5 to 14.5 kyr). Earth Planet. Sci. Lett., 256, 9099, doi:10.1016/j.epsl.2007.01.015.

    • Search Google Scholar
    • Export Citation
  • Chappell, J., and N. J. Shackleton, 1986: Oxygen isotopes and sea level. Nature, 324, 137140, doi:10.1038/324137a0.

  • Chappell, J., A. Omura, T. Esat, M. McCulloch, J. Pandolfi, Y. Ota, and B. Pillans, 1996: Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet. Sci. Lett., 141, 227236, doi:10.1016/0012-821X(96)00062-3.

    • Search Google Scholar
    • Export Citation
  • Charles, C. D., J. Lynch-Stieglitz, U. S. Ninnemann, and R. G. Fairbanks, 1996: Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett., 142, 1927, doi:10.1016/0012-821X(96)00083-0.

    • Search Google Scholar
    • Export Citation
  • Chen, J. H., H. A. Curran, B. White, and G. J. Wasserburg, 1991: Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geol. Soc. Amer. Bull., 103, 8297, doi:10.1130/0016-7606(1991)103<0082:PCOTLI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., and Coauthors, 2009: The Last Glacial Maximum. Science, 325, 710714, doi:10.1126/science.1172873.

  • Collins, L. B., Z. R. Zhu, K.-H. Wyrwoll, B. G. Hatcher, P. E. Playford, J. H. Chen, A. Eisenhauer, and G. J. Wasserburg, 1993a: Late Quaternary evolution of coral reefs on a cool-water carbonate margin: The Abrolhos Carbonate Platforms, southwest Australia. Mar. Geol., 110, 203212, doi:10.1016/0025-3227(93)90085-A.

    • Search Google Scholar
    • Export Citation
  • Collins, L. B., and Coauthors, 1993b: Holocene growth history of a reef complex on a cool-water carbonate margin: Easter Group of the Houtman Abrolhos, Eastern Indian Ocean. Mar. Geol., 115, 2946, doi:10.1016/0025-3227(93)90073-5.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and H. Tauber, 1969: Glacier oxygen-18 content and Pleistocene ocean temperatures. Science, 166, 499502, doi:10.1126/science.166.3904.499.

    • Search Google Scholar
    • Export Citation
  • Duplessy, J.-C., E. Bard, M. Arnold, N. J. Shackleton, J. Duprat, and L. Labeyrie, 1991: How fast did the ocean-atmosphere system run during the last deglaciation? Earth Planet. Sci. Lett., 103, 2740, doi:10.1016/0012-821X(91)90147-A.

    • Search Google Scholar
    • Export Citation
  • Duplessy, J.-C., L. Labeyrie, and C. Waelbroeck, 2002: Constraints on the ocean oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: Paleoceanographic implications. Quat. Sci. Rev., 21, 315330, doi:10.1016/S0277-3791(01)00107-X.

    • Search Google Scholar
    • Export Citation
  • Edwards, R. L., F. W. Taylor, and G. J. Wasserburg, 1988: Dating earthquakes with high-precision Thorium-230 ages of very young corals. Earth Planet. Sci. Lett., 90, 371381, doi:10.1016/0012-821X(88)90136-7.

    • Search Google Scholar
    • Export Citation
  • Edwards, R. L., J. W. Beck, G. S. Burr, D. J. Donahue, J. M. A. Chappell, A. L. Bloom, E. R. M. Druffel, and F. W. Taylor, 1993: A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science, 260, 962968, doi:10.1126/science.260.5110.962.

    • Search Google Scholar
    • Export Citation
  • Emiliani, C., 1966: Paleotemperature analysis of Caribbean cores P6304-8 and P6304-9 and a generalized temperature curve for the past 425,000 years. J. Geol., 74, 109126, doi:10.1086/627150.

    • Search Google Scholar
    • Export Citation
  • Esat, T. M., M. T. McCulloch, J. Chappell, B. Pillans, and A. Omura, 1999: Rapid fluctuations in sea level recorded at Huon Peninsula during the penultimate deglaciation. Science, 283, 197201, doi:10.1126/science.283.5399.197.

    • Search Google Scholar
    • Export Citation
  • Fairbanks, R. G., 1989: A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637642, doi:10.1038/342637a0.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Gallup, C. D., R. L. Edwards, and R. G. Johnson, 1994: The timing of high sea levels over the past 200,000 years. Science, 263, 796800, doi:10.1126/science.263.5148.796.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2012: Tracer transport timescales and the observed Atlantic-Pacific lag in the timing of the Last Termination. Paleoceanography, 27, PA3225, doi:10.1029/2011PA002273.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2006: Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic δ18O observations and a geostrophic inverse model. Geochem. Geophys. Geosyst.,7, Q11N07, doi:10.1029/2006GC001383.

  • Gersonde, R., and Coauthors, 1999: Southern Ocean paleoceanography. Proc. Ocean Drill. Program: Initial Rep.,177, doi:10.2973/odp.proc.ir.177.1999.

  • Hansen, P. C., 1998: Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics, 243 pp.

  • Hodell, D. A., K. A. Venz, C. D. Charles, and U. S. Ninnemann, 2003: Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst., 4, 1004, doi:10.1029/2002GC000367.

    • Search Google Scholar
    • Export Citation
  • Huettel, M., and I. T. Webster, 2001: Porewater flow in permeable sediments. The Benthic Boundary Layer: Transport Processes and Biogeochemistry, B. P. Boudreau and B. B. Jørgensen, Eds., Oxford University Press, 144–179.

  • Judd, A., and M. Hovland, 2007: Seabed Fluid Flow. Cambridge University Press, 492 pp.

  • Lado Insua, T., A. J. Spivack, D. Graham, S. D’Hondt, and K. Moran, 2014: Reconstruction of Pacific Ocean bottom water salinity during the Last Glacial Maximum. Geophys. Res. Lett., 41, 29142920, doi:10.1002/2014GL059575.

    • Search Google Scholar
    • Export Citation
  • Lamy, F., J. Kaiser, U. Ninnemann, D. Hebbeln, H. W. Arz, and J. Stoner, 2004: Antarctic timing of surface water changes off Chile and Patagonian Ice Sheet response. Science, 304, 19591962, doi:10.1126/science.1097863.

    • Search Google Scholar
    • Export Citation
  • LeGrand, P., and C. Wunsch, 1995: Constraints from paleotracer data on the North Atlantic circulation during the Last Glacial Maximum. Paleoceanography, 10, 10111045, doi:10.1029/95PA01455.

    • Search Google Scholar
    • Export Citation
  • LeGrande, A. N., and G. A. Schmidt, 2006: Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett., 33, L12604, doi:10.1029/2006GL026011.

    • Search Google Scholar
    • Export Citation
  • Li, Y.-H., and S. Gregory, 1974: Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta, 38, 703714, doi:10.1016/0016-7037(74)90145-8.

    • Search Google Scholar
    • Export Citation
  • Ludwig, K. R., D. R. Muhs, K. R. Simmons, R. B. Halley, and E. A. Shinn, 1996: Sea-level records at ~80 ka from tectonically stable platforms: Florida and Bermuda. Geology, 24, 211214, doi:10.1130/0091-7613(1996)024<0211:SLRAKF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lund, D. C., J. F. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., 2004: Hemispheric asynchrony of abrupt climate change. Science, 304, 19191920, doi:10.1126/science.1100374.

  • Malone, M. J., J. B. Martin, J. Schonfeld, U. S. Ninnemann, D. Nurnberg, and T. S. White, 2004: The oxygen isotopic composition and temperature of Southern Ocean bottom waters during the Last Glacial Maximum. Earth Planet. Sci. Lett., 222, 275283, doi:10.1016/j.epsl.2004.02.027.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., and W. B. Curry, 2008: On the abyssal circulation in the glacial Atlantic. J. Phys. Oceanogr., 38, 20142037, doi:10.1175/2008JPO3895.1.

    • Search Google Scholar
    • Export Citation
  • MARGO Project Members, 2009: Constraints on the magnitude and patterns of cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, doi:10.1038/ngeo411.

    • Search Google Scholar
    • Export Citation
  • McDuff, R. E., 1985: The chemistry of interstitial waters, Deep Sea Drilling Project Leg 86. Initial Reports of the Deep Sea Drilling Project, Vol. 86, G. R. Heath et al., Eds., U.S. Government Printing Office, 675–687, doi:10.2973/dsdp.proc.86.131.1985.

  • Miller, M. D., 2014: The deep ocean density structure at the Last Glacial Maximum: What was it and why? Ph.D. dissertation, California Institute of Technology, 230 pp.

  • Miller, M. D., J. F. Adkins, D. Menemenlis, and M. P. Schodlok, 2012: The role of ocean cooling in setting glacial southern source bottom water salinity. Paleoceanography, 27, PA3207, doi:10.1029/2012PA002297.

    • Search Google Scholar
    • Export Citation
  • Minson, S. E., M. Simons, and J. L. Beck, 2013: Bayesian inversion for finite fault earthquake source models I—Theory and algorithm. Geophys. J. Int., 194, 17011726, doi:10.1093/gji/ggt180.

    • Search Google Scholar
    • Export Citation
  • Mix, A. C., 1987: The oxygen-isotope record of glaciation. North America and Adjacent Oceans during the Last Deglaciation, W. F. Ruddiman and H. E. Wright Jr., Eds., Geological Society of America, 111–135.

  • Pahnke, K., and R. Zahn, 2005: Southern Hemisphere water mass conversion linked with North Atlantic climate variability. Science, 307, 17411746, doi:10.1126/science.1102163.

    • Search Google Scholar
    • Export Citation
  • Paul, H. A., S. M. Bernasconi, D. W. Schmid, and J. A. Mckenzie, 2001: Oxygen isotopic composition of the Mediterranean Sea since the Last Glacial Maximum: Constraints from pore water analyses. Earth Planet. Sci. Lett., 192, 114, doi:10.1016/S0012-821X(01)00437-X.

    • Search Google Scholar
    • Export Citation
  • Robinson, L. F., J. F. Adkins, L. D. Keigwin, J. Southon, D. P. Fernandez, S.-L. Wang, and D. S. Scheirer, 2005: Radiocarbon variability in the western North Atlantic during the last deglaciation. Science, 310, 14691473, doi:10.1126/science.1114832.

    • Search Google Scholar
    • Export Citation
  • Schrag, D. P., and D. J. DePaolo, 1993: Determination of δ18O of seawater in the deep ocean during the Last Glacial Maximum. Paleoceanography, 8, 16, doi:10.1029/92PA02796.

    • Search Google Scholar
    • Export Citation
  • Schrag, D. P., G. Hampt, and D. Murray, 1996: Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science, 272, 19301932, doi:10.1126/science.272.5270.1930.

    • Search Google Scholar
    • Export Citation
  • Schrag, D. P., J. Adkins, K. McIntyre, J. Alexander, D. Hodell, C. Charles, and J. McManus, 2002: The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev., 21, 331342, doi:10.1016/S0277-3791(01)00110-X.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., G. R. Bigg, and E. J. Rohling, 1999: Global Seawater Oxygen-18 Database–v1.21. NASA Goddard Institute for Space Studies, accessed 12 September 2012. [Available online at http://data.giss.nasa.gov/o18data/.]

  • Shackleton, N. J., 1967: Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature, 215, 1517, doi:10.1038/215015a0.

  • Skinner, L., and N. Shackleton, 2005: An Atlantic lead over Pacific deep-water change across Termination I: Implications for the application of the marine isotope stage stratigraphy. Quat. Sci. Rev., 24, 571580, doi:10.1016/j.quascirev.2004.11.008.

    • Search Google Scholar
    • Export Citation
  • Spinelli, G. A., E. R. Giambalvo, and A. T. Fisher, 2004: Hydrologic properties and distribution of sediments. Hydrogeology of the Oceanic Lithosphere, E. Davis and H. Elderfield, Eds., Cambridge University Press, 151–188.

  • Stein, M., G. J. Wasserburg, P. Aharon, J. H. Chen, Z. R. Zhu, A. Bloom, and J. Chappell, 1993: TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochim. Cosmochim. Acta, 57, 25412554, doi:10.1016/0016-7037(93)90416-T.

    • Search Google Scholar
    • Export Citation
  • Stirling, C. H., T. M. Esat, M. T. McCulloch, and K. Lambeck, 1995: High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial. Earth Planet. Sci. Lett., 135, 115130, doi:10.1016/0012-821X(95)00152-3.

    • Search Google Scholar
    • Export Citation
  • Stirling, C. H., T. M. Esat, K. Lambeck, and M. T. McCulloch, 1998: Timing and duration of the Last Interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett., 160, 745762, doi:10.1016/S0012-821X(98)00125-3.

    • Search Google Scholar
    • Export Citation
  • Szabo, B. J., K. R. Ludwig, D. R. Muhs, and K. R. Simmons, 1994: Thorium-230 ages of corals and duration of the Last Interglacial sea-level high stand on Oahu, Hawai’i. Science, 266, 9396, doi:10.1126/science.266.5182.93.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, 352 pp.

  • Wang, J. H., C. V. Robinson, and I. S. Edelman, 1953: Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3 and O18 as tracers. J. Amer. Chem. Soc., 75, 466470, doi:10.1021/ja01098a061.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2008: How long to oceanic tracer and proxy equilibrium? Quat. Sci. Rev., 27, 637651, doi:10.1016/j.quascirev.2008.01.006.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., B. M. Sloyan, and T. J. McDougall, 2009: Diagnosing the Southern Ocean overturning from tracer fields. J. Phys. Oceanogr., 39, 29262940, doi:10.1175/2009JPO4052.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010: Weak mixing in the eastern North Atlantic: An application of the tracer-contour inverse method. J. Phys. Oceanogr., 40, 18811893, doi:10.1175/2010JPO4360.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 82 8
PDF Downloads 100 45 1

The Information Content of Pore Fluid δ18O and [Cl]

View More View Less
  • 1 California Institute of Technology, Pasadena, California
Restricted access

Abstract

Paleoceanographic proxies indicate that the ocean state during the Last Glacial Maximum (LGM) differed from the modern ocean state. Depth profiles of ocean sediment pore fluid δ18O and [Cl] have been used to reconstruct the δ18O and salinity at the LGM. Here, it is investigated whether pore fluid profiles can constrain ocean δ18O and salinity at other times and, simultaneously, their ability to constrain the LGM δ18O and salinity. An inverse framework is developed that relies on Bayesian parameter estimation, thus allowing formal separation of prior assumptions from the information in observations. Synthetic problems are used to explore the information about past ocean tracers that can be recovered from pore fluid profiles. It is concluded that prior knowledge of deep ocean mixing time scales is essential to an accurate inverse estimate of LGM ocean salinity and δ18O from modern pore fluid profiles. The most recent 10 000 years of ocean salinity and δ18O and the error in their estimates are better constrained by the pore fluid profiles than are the LGM values. The inverse estimate of salinity and δ18O is strongly correlated with the estimate of diffusivity of oxygen isotopes and [Cl] in sediment pore fluids. Uncertainty on the diffusivity of oxygen isotopes and chloride in sediments is reduced through inversion of the pore fluid profiles, but simultaneous estimation of δ18O or salinity and diffusivity increases the total uncertainty. The error reported in previous work may underestimate the true uncertainty of LGM deep ocean salinity and δ18O.

Current affiliation: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts.

Corresponding author address: Madeline D. Miller, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138. E-mail: madelinemiller@fas.harvard.edu

Abstract

Paleoceanographic proxies indicate that the ocean state during the Last Glacial Maximum (LGM) differed from the modern ocean state. Depth profiles of ocean sediment pore fluid δ18O and [Cl] have been used to reconstruct the δ18O and salinity at the LGM. Here, it is investigated whether pore fluid profiles can constrain ocean δ18O and salinity at other times and, simultaneously, their ability to constrain the LGM δ18O and salinity. An inverse framework is developed that relies on Bayesian parameter estimation, thus allowing formal separation of prior assumptions from the information in observations. Synthetic problems are used to explore the information about past ocean tracers that can be recovered from pore fluid profiles. It is concluded that prior knowledge of deep ocean mixing time scales is essential to an accurate inverse estimate of LGM ocean salinity and δ18O from modern pore fluid profiles. The most recent 10 000 years of ocean salinity and δ18O and the error in their estimates are better constrained by the pore fluid profiles than are the LGM values. The inverse estimate of salinity and δ18O is strongly correlated with the estimate of diffusivity of oxygen isotopes and [Cl] in sediment pore fluids. Uncertainty on the diffusivity of oxygen isotopes and chloride in sediments is reduced through inversion of the pore fluid profiles, but simultaneous estimation of δ18O or salinity and diffusivity increases the total uncertainty. The error reported in previous work may underestimate the true uncertainty of LGM deep ocean salinity and δ18O.

Current affiliation: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts.

Corresponding author address: Madeline D. Miller, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138. E-mail: madelinemiller@fas.harvard.edu
Save