• Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res.,114, C02024, doi:10.1029/2008JC005072.

  • Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shriver, 2013: On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr., 43, 283300, doi:10.1175/JPO-D-11-0240.1.

    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and S. G. Llewellyn Smith, 2015: Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J. Phys. Oceanogr., 45, 272293, doi:10.1175/JPO-D-14-0068.1.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, doi:10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Deusebio, E., A. Vallgren, and E. Lindborg, 2013: The route to dissipation in strongly stratified and rotating flows. J. Fluid Mech., 720, 66103, doi:10.1017/jfm.2012.611.

    • Search Google Scholar
    • Export Citation
  • Dewan, E., 1997: Saturated-cascade similitude theory of gravity wave spectra. J. Geophys. Res., 102, 29 79929 817, doi:10.1029/97JD02151.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and A. M. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, doi:10.1016/j.ocemod.2009.03.007.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus, 5A, 225230, doi:10.1111/j.2153-3490.1953.tb01051.x.

    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, doi:10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1991: Dissipation of energy in the locally isotropic turbulence. Proc. Math. Phys. Sci., 434, 1517, doi:10.1098/rspa.1991.0076.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2012: Surface quasigeostrophic solutions and baroclinic modes with exponential stratification. J. Phys. Oceanogr., 42, 569580, doi:10.1175/JPO-D-11-0111.1.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2005: The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett.,32, L01809, doi:10.1029/2004GL021319.

  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, doi:10.1017/S0022112005008128.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, doi:10.1029/RG023i002p00165.

  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314, doi:10.1017/S0022112009992643.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, doi:10.1017/S0022112076002899.

    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, H. Yamazaki, and M. J. Doubell, 2009: Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys. Res. Lett.,36, L12609, doi:10.1029/2009GL038832.

  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960,doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett.,38, L08610, doi:10.1029/2011GL046576.

  • Rhines, P., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg et al., Eds., The Sea, Vol. 6, Wiley, 189–318.

  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, doi:10.1175/JPO2771.1.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, doi:10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467, doi:10.1175/2008JAS2653.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517, 281308, doi:10.1017/S0022112004000977.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2006: The transition from geostrophic to stratified turbulence. J. Fluid Mech., 568, 89108, doi:10.1017/S0022112006002060.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. N. Haine, and P. L. Read, 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 35433556, doi:10.1175/2008JAS2480.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612, doi:10.1038/ngeo943.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 140 11
PDF Downloads 134 69 3

Routes to Dissipation under Different Dynamical Conditions

View More View Less
  • 1 University of Hamburg, Hamburg, Germany
Restricted access

Abstract

In this study, it is investigated how ageostrophic dynamics generate an energy flux toward smaller scales. Numerical simulations of baroclinic instability are used with varying dynamical conditions ranging from quasigeostrophic balance to ageostrophic flows. It turns out that dissipation at smaller scales by viscous friction is much more efficient if the flow is dominated by ageostrophic dynamics than in quasigeostrophic conditions. In the presence of ageostrophic dynamics, an energy flux toward smaller scales is observed while energy is transferred toward larger scales for quasigeostrophic dynamics. Decomposing the velocity field into its rotational and divergent components shows that only the divergent velocity component, which becomes stronger for ageostrophic flows, features a downscale flux. Variation of the dynamical conditions from ageostrophic dynamics to quasigeostrophic balanced flows shows that the forward energy flux and therefore the small-scale dissipation decreases as soon as the horizontal divergent velocity component decreases. A functional relationship between the small-scale dissipation and the local Richardson number is estimated. This functional relationship is used to obtain a global estimate of the small-scale dissipation of 0.31 ± 0.23 TW from a high-resolution realistic global ocean model. This emphasizes that an ageostrophic direct route to dissipation might be of importance in the ocean energy cycle.

Corresponding author address: Nils Brüggemann, University of Hamburg, Bundesstrae 53, Hamburg D-20146, Germany. E-mail: nils.brueggemann@uni-hamburg.de

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Abstract

In this study, it is investigated how ageostrophic dynamics generate an energy flux toward smaller scales. Numerical simulations of baroclinic instability are used with varying dynamical conditions ranging from quasigeostrophic balance to ageostrophic flows. It turns out that dissipation at smaller scales by viscous friction is much more efficient if the flow is dominated by ageostrophic dynamics than in quasigeostrophic conditions. In the presence of ageostrophic dynamics, an energy flux toward smaller scales is observed while energy is transferred toward larger scales for quasigeostrophic dynamics. Decomposing the velocity field into its rotational and divergent components shows that only the divergent velocity component, which becomes stronger for ageostrophic flows, features a downscale flux. Variation of the dynamical conditions from ageostrophic dynamics to quasigeostrophic balanced flows shows that the forward energy flux and therefore the small-scale dissipation decreases as soon as the horizontal divergent velocity component decreases. A functional relationship between the small-scale dissipation and the local Richardson number is estimated. This functional relationship is used to obtain a global estimate of the small-scale dissipation of 0.31 ± 0.23 TW from a high-resolution realistic global ocean model. This emphasizes that an ageostrophic direct route to dissipation might be of importance in the ocean energy cycle.

Corresponding author address: Nils Brüggemann, University of Hamburg, Bundesstrae 53, Hamburg D-20146, Germany. E-mail: nils.brueggemann@uni-hamburg.de

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Save