• Blumen, W., 1980: A comparison between the Hoskins-Bretherton model of frontogenesis and the analysis of an intense frontal zone. J. Atmos. Sci., 37, 6477, doi:10.1175/1520-0469(1980)037<0064:ACBTHB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyd, J., 1992: The energy spectrum of fronts: Time evolution of shocks in Burgers’ equation. J. Atmos. Sci., 49, 128139, doi:10.1175/1520-0469(1992)049<0128:TESOFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capet, X. J., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X. J., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., 2004: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 657 pp.

  • Garrett, C., and J. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc. London, B302, 563581, doi:10.1098/rsta.1981.0183.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G., C. Snyder, and D. Muraki, 2002: A new surface model for cyclone–anticyclone asymmetry. J. Atmos. Sci., 59, 24052420, doi:10.1175/1520-0469(2002)059<2405:ANSMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hopf, E., 1950: The differential equation . Commun. Pure Appl. Math., 3, 201230, doi:10.1002/cpa.3160030302.

  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, doi:10.1146/annurev.fl.14.010182.001023.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Impact of the small-scale elongated filaments on the oceanic vertical pump. J. Mar. Res., 64, 835851, doi:10.1357/002224006779698369.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and M. J. Molemaker, 2011: Baroclinic frontal arrest: A sequel to unstable frontogenesis. J. Phys. Oceanogr., 41, 601619, doi:10.1175/2010JPO4493.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009a: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, doi:10.1175/2009JPO4186.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., F. Colas, and M. J. Molemaker, 2009b: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett.,36, L18602, doi:10.1029/2009GL039402.

  • McWilliams, J. C., E. Huckle, and A. F. Shchepetkin, 2009c: Buoyancy effects in a stratified Ekman layer. J. Phys. Oceanogr., 39, 25812599, doi:10.1175/2009JPO4130.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, doi:10.1175/JPO-D-13-0122.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, A456, 12171280, doi:10.1098/rspa.2000.0560.

    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res.,111, C09038, doi:10.1029/2005JC002964.

  • Ponte, A., P. Klein, X. Capet, P.-Y. Le Traon, B. Chapron, and P. Lherminier, 2013: Diagnosing surface mixed layer dynamics from high-resolution satellite observations: Numerical insights. J. Phys. Oceanogr., 43, 13451355, doi:10.1175/JPO-D-12-0136.1.

    • Search Google Scholar
    • Export Citation
  • Richtmeyer, R. D., and K. W. Morton, 1967: Difference Methods for Initial Value Problems. Wiley, 405 pp.

  • Rudnick, D., 1996: Intensive surveys of the Azores Front: 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101, 16 29116 303, doi:10.1029/96JC01144.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., and J. Luyten, 1996: Intensive surveys of the Azores Front: 1. Tracer and dynamics. J. Geophys. Res., 101, 923939, doi:10.1029/95JC02867.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2008: Computational kernel algorithms for finescale, multi-process, long-time oceanic simulations. Handb. Numer. Anal., 14, 121183, doi:10.1016/S1570-8659(08)01202-0.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., and C. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, doi:10.1175/JPO2737.1.

    • Search Google Scholar
    • Export Citation
  • Whitham, G. B., 1974: Linear and Nonlinear Waves. Wiley, 636 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 611 424 29
PDF Downloads 488 285 22

Filament Frontogenesis by Boundary Layer Turbulence

View More View Less
  • 1 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

A submesoscale filament of dense water in the oceanic surface layer can undergo frontogenesis with a secondary circulation that has a surface horizontal convergence and downwelling in its center. This occurs either because of the mesoscale straining deformation or because of the surface boundary layer turbulence that causes vertical eddy momentum flux divergence or, more briefly, vertical momentum mixing. In the latter case the circulation approximately has a linear horizontal momentum balance among the baroclinic pressure gradient, Coriolis force, and vertical momentum mixing, that is, a turbulent thermal wind. The frontogenetic evolution induced by the turbulent mixing sharpens the transverse gradient of the longitudinal velocity (i.e., it increases the vertical vorticity) through convergent advection by the secondary circulation. In an approximate model based on the turbulent thermal wind, the central vorticity approaches a finite-time singularity, and in a more general hydrostatic model, the central vorticity and horizontal convergence are amplified by shrinking the transverse scale to near the model’s resolution limit within a short advective period on the order of a day.

Corresponding author address: James C. McWilliams, IGPP, UCLA, Los Angeles, CA 90095-1567. E-mail: jcm@atmos.ucla.edu

Abstract

A submesoscale filament of dense water in the oceanic surface layer can undergo frontogenesis with a secondary circulation that has a surface horizontal convergence and downwelling in its center. This occurs either because of the mesoscale straining deformation or because of the surface boundary layer turbulence that causes vertical eddy momentum flux divergence or, more briefly, vertical momentum mixing. In the latter case the circulation approximately has a linear horizontal momentum balance among the baroclinic pressure gradient, Coriolis force, and vertical momentum mixing, that is, a turbulent thermal wind. The frontogenetic evolution induced by the turbulent mixing sharpens the transverse gradient of the longitudinal velocity (i.e., it increases the vertical vorticity) through convergent advection by the secondary circulation. In an approximate model based on the turbulent thermal wind, the central vorticity approaches a finite-time singularity, and in a more general hydrostatic model, the central vorticity and horizontal convergence are amplified by shrinking the transverse scale to near the model’s resolution limit within a short advective period on the order of a day.

Corresponding author address: James C. McWilliams, IGPP, UCLA, Los Angeles, CA 90095-1567. E-mail: jcm@atmos.ucla.edu
Save