• Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Breugem, W. A., and L. H. Holthuijsen, 2007: Generalized shallow water wave growth from Lake George. J. Waterw. Port Coastal Ocean Eng., 133, 173182, doi:10.1061/(ASCE)0733-950X(2007)133:3(173).

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr., 31, 31333145, doi:10.1175/1520-0485(2001)031<3133:STWELU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and H. Baumert, 1995: On the performance of a mixed-layer model based on the k-ε turbulence closure. J. Geophys. Res., 100, 85238540, doi:10.1029/94JC03229.

    • Search Google Scholar
    • Export Citation
  • Carniel, S., J. C. Warner, J. Chiggiato, and M. Sclavo, 2009: Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event. Ocean Modell., 30, 225239, doi:10.1016/j.ocemod.2009.07.001.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., 1996: Velocity profiles and surface roughness under breaking waves. J. Geophys. Res., 101, 12651277, doi:10.1029/95JC03220.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, doi:10.1146/annurev-marine-010213-135138.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, doi:10.1002/2013GL058193.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterizations of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. H. Trowbridge, and A. J. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37, 17641777, doi:10.1175/JPO3098.1.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gemmrich, J., 2012: Bubble-induced turbulence suppression in Langmuir circulation. Geophys. Res. Lett., 39, L10604, doi:10.1029/2012GL051691.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and D. M. Farmer, 1999: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29, 480499, doi:10.1175/1520-0485(1999)029<0480:NSTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., T. D. Mudge, and V. D. Polonichko, 1994: On the energy input from wind to surface waves. J. Phys. Oceanogr., 24, 24132417, doi:10.1175/1520-0485(1994)024<2413:OTEIFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, J. B. Edson, A. J. Plueddemann, E. A. Terray, and J. J. Fredericks, 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38, 10541072, doi:10.1175/2007JPO3739.1.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, E. A. Terray, A. J. Plueddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, doi:10.1175/2008JPO4044.1.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., R. J. Chant, and J. L. Wilkin, 2013: Breaking surface wave effects on river plume dynamics during upwelling-favorable winds. J. Phys. Oceanogr., 43, 19591980, doi:10.1175/JPO-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624, doi:10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84103, doi:10.1175/JPO-D-14-0046.1.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

  • Hwang, P. A., 2009: Estimating the effective energy transfer velocity at air-sea interface. J. Geophys. Res., 114, C11011, doi:10.1029/2009JC005497.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008a: The influence of whitecapping waves on the vertical structure of turbulence in a shallow estuarine environment. J. Phys. Oceanogr., 38, 15631580, doi:10.1175/2007JPO3766.1.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008b: Modeling the influence of wave-enhanced turbulence in a shallow tide- and wind-driven water column. J. Geophys. Res., 113, C03009, doi:10.1029/2007JC004246.

    • Search Google Scholar
    • Export Citation
  • Jones, W. P., and B. E. Launder, 1972: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 15, 301314, doi:10.1016/0017-9310(72)90076-2.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, doi:10.1175/2010JPO4403.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2012: Nonlocal transport due to Langmuir circulation in a coastal ocean. J. Geophys. Res., 117, C12007, doi:10.1029/2012JC008340.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, doi:10.1175/JPO-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, doi:10.1175/JPO-D-13-0122.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1947: A critical wind speed for air-sea boundary processes. J. Mar. Res., 6, 203218.

  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, doi:10.1029/JZ069i024p05181.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., W. R. Geyer, and J. H. Trowbridge, 2011: The influence of stratification and nonlocal turbulent production on estuarine turbulence: An assessment of turbulence closure with field observations. J. Phys. Oceanogr., 41, 166185, doi:10.1175/2010JPO4470.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2008: Computational kernel algorithms for fine-scale, multi-process, long-term oceanic simulations. Computational Methods for the Ocean and the Atmosphere, P. G. Ciarlet, R. Temam, and J. Tribbia, Eds., Vol. XIV, Handbook of Numerical Analysis, Elsevier, 121–183.

  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, doi:10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515664, doi:10.1029/91JC03118.

  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12 64912 668, doi:10.1029/97JC03611.

  • Soloviev, A., and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50, 371395, doi:10.1016/S0967-0637(03)00004-9.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174, doi:10.1017/S0022112004008882.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, doi:10.1175/JPO-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., 2012: The influence of Langmuir turbulence on the scaling for the dissipation rate in the oceanic boundary layer. J. Geophys. Res., 117, C05015, doi:10.1029/2011JC007235.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267, doi:10.1017/S0022112002007838.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., E. A. D’Asaro, M. F. Cronin, W. E. Rogers, R. R. Harcourt, and A. Shcherbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 59515962, doi:10.1002/2013JC008837.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., A. R. Horner-Devine, S. Zippel, C. Rusch, and W. Geyer, 2014: Wave breaking turbulence at the offshore front of the Columbia River plume. Geophys. Res. Lett., 41, 89878993, doi:10.1002/2014GL062274.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., T. R. Osborn, J. F. E. Jackson, A. J. Hall, and R. G. Lueck, 2003: Measurements of turbulence in the upper-ocean mixing layer using autosub. J. Phys. Oceanogr., 33, 122145, doi:10.1175/1520-0485(2003)033<0122:MOTITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., 1992: A simple description of the deepening and structure of a stably stratified flow driven by a surface stress. J. Geophys. Res., 97, 15 52915 543, doi:10.1029/92JC01512.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., J. Gemmrich, and H. Czerski, 2012: Reduced upper ocean turbulence and changes to bubble size distributions during large downward heat flux events. J. Geophys. Res., 117, C00H16, doi:10.1029/2011JC007308.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, doi:10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Young, I., and L. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coastal Eng., 29, 4778, doi:10.1016/S0378-3839(96)00006-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Han, D. Wang, W. Li, and Z. He, 2011: Effect of surface wave breaking on the surface boundary layer of temperature in the Yellow Sea in summer. Ocean Modell., 38, 267279, doi:10.1016/j.ocemod.2011.04.006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 64 6
PDF Downloads 74 30 0

The Role of Whitecapping in Thickening the Ocean Surface Boundary Layer

View More View Less
  • 1 Skidmore College, Saratoga Springs, New York
  • | 2 Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program, Cambridge, Massachusetts
Restricted access

Abstract

The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.

Corresponding author address: Gregory P. Gerbi, Physics and Geosciences Departments, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866. E-mail: ggerbi@skidmore.edu

Abstract

The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.

Corresponding author address: Gregory P. Gerbi, Physics and Geosciences Departments, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866. E-mail: ggerbi@skidmore.edu
Save