• Abernathey, R., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, doi:10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, doi:10.1016/j.ocemod.2013.07.004.

    • Search Google Scholar
    • Export Citation
  • Aris, R., 1956: On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. London,A235, 67–77, doi:10.1098/rspa.1956.0065.

    • Search Google Scholar
    • Export Citation
  • Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, doi:10.1063/1.869433.

    • Search Google Scholar
    • Export Citation
  • Bachman, S., and B. Fox-Kemper, 2013: Eddy parameterization challenge suite I: Eady spindown. Ocean Modell., 64, 1228, doi:10.1016/j.ocemod.2012.12.003.

    • Search Google Scholar
    • Export Citation
  • Bachman, S., B. Fox-Kemper, and F. Bryan, 2015: A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Modell., 86, 114, doi:10.1016/j.ocemod.2014.11.006.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1952: Diffusion in a field of homogeneous turbulence. Math. Proc. Cambridge Philos. Soc.,48, 345–362, doi:10.1017/S0305004100027687.

  • Bennett, A. F., 1987: A Lagrangian analysis of turbulent diffusion. Rev. Geophys., 25, 799822, doi:10.1029/RG025i004p00799.

  • Bennett, A. F., 2006: Lagrangian Fluid Dynamics. Cambridge University Press, 286 pp.

  • Berloff, P. S., J. C. McWilliams, and A. Bracco, 2002: Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32, 764796, doi:10.1175/1520-0485(2002)032<0764:MTIOGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. H. LaCasce, and A. Provenzale, 2000: Velocity probability density functions for oceanic floats. J. Phys. Oceanogr., 30, 461474, doi:10.1175/1520-0485(2000)030<0461:VPDFFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bratseth, A. M., 1998: On the estimation of transport characteristics of atmospheric data sets. Tellus, 50A, 451467, doi:10.1034/j.1600-0870.1998.t01-3-00006.x.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. L. McClean, S. T. Gille, and A. Griesel, 2014: Isopycnal eddy diffusivities and critical layers in the Kuroshio Extension from an eddying ocean model. J. Phys. Oceanogr., 44, 21912211, doi:10.1175/JPO-D-13-0258.1.

    • Search Google Scholar
    • Export Citation
  • Crow, E. L., F. A. Davis, and M. W. Maxfield, 1960: Statistics Manual: With Examples Taken from Ordnance Development. Dover, 288 pp.

  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, doi:10.1016/j.ocemod.2007.03.006.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1987: Modeling eddy transport of passive tracers. J. Mar. Res., 45, 635666, doi:10.1357/002224087788326803.

  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Dutay, J.-C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell., 4, 89120, doi:10.1016/S1463-5003(01)00013-0.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, doi:10.1016/j.ocemod.2007.09.002.

  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, doi:10.1016/j.ocemod.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, doi:10.1175/JPO2785.1.

    • Search Google Scholar
    • Export Citation
  • Figueroa, H. A., and D. B. Olson, 1994: Eddy resolution versus eddy diffusion in a double gyre GCM. Part I: The Lagrangian and Eulerian description. J. Phys. Oceanogr., 24, 371386, doi:10.1175/1520-0485(1994)024<0371:ERVEDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, H., E. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, 1979: Mixing in Inland and Coastal Waters. Academic Press, 483 pp.

  • Garraffo, Z. D., A. J. Mariano, A. Griffa, C. Veneziani, and E. P. Chassignet, 2001: Lagrangian data in a high-resolution numerical simulation of the North Atlantic: I. Comparison with in situ drifter data. J. Mar. Syst., 29, 157176, doi:10.1016/S0924-7963(01)00015-X.

    • Search Google Scholar
    • Export Citation
  • Gillette, A., A. Rand, and C. Bajaj, 2012: Error estimates for generalized barycentric interpolation. Adv. Comput. Math., 37, 417439, doi:10.1007/s10444-011-9218-z.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., J. P. Dunne, R. M. Key, K. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. Swathi, 2004: Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochem. Cycles,18, GB4010, doi:10.1029/2003GB002097.

  • Griesel, A., J. McClean, S. Gille, J. Sprintall, and C. Eden, 2014: Eulerian and Lagrangian isopycnal eddy diffusivities in the Southern Ocean of an eddying model. J. Phys. Oceanogr., 44, 644661, doi:10.1175/JPO-D-13-039.1.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., L.-P. Nadeau, and K. S. Smith, 2013: Mesoscale eddy energy locality in an idealized ocean model. J. Phys. Oceanogr., 43, 19111923, doi:10.1175/JPO-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., and L. B. Lin, 1975: On the generation of mesoscale eddies and their contribution to the oceanic general circulation: I. A preliminary numerical experiment. J. Phys. Oceanogr., 5, 642657, doi:10.1175/1520-0485(1975)005<0642:OTGOME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holleman, R. C., and M. T. Stacey, 2013: Transient dispersion regimes. J. Fluid Mech., 736, 130149, doi:10.1017/jfm.2013.535.

  • Holleman, R. C., O. Fringer, and M. Stacey, 2013: Numerical diffusion for flow-aligned unstructured grids with application to estuarine modeling. Int. J. Numer. Methods Fluids, 72, 11171145, doi:10.1002/fld.3774.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381–389, doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacobsen, D., M. Gunzburger, T. Ringler, J. Burkardt, and J. Peterson, 2013: Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations. Geosci. Model Dev., 6, 13531365, doi:10.5194/gmd-6-1353-2013.

    • Search Google Scholar
    • Export Citation
  • Jakobsen, P. K., M. H. Ribergaard, D. Quadfasel, T. Schmith, and C. W. Hughes, 2003: Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: Variability from the mesoscale to interannual. J. Geophys. Res., 108, 3251, doi:10.1029/2002JC001554.

    • Search Google Scholar
    • Export Citation
  • Ju, L., T. Ringler, and M. Gunzburger, 2011: Voronoi tessellations and their application to climate and global modeling. Numerical Techniques for Global Atmospheric Models, Springer, 313–342.

  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175, doi:10.1175/2009JPO4239.1.

    • Search Google Scholar
    • Export Citation
  • Keating, S. R., K. S. Smith, and P. R. Kramer, 2011: Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence. J. Phys. Oceanogr., 41, 15121534, doi:10.1175/2011JPO4580.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012a: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, doi:10.1175/JPO-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, J. H. Lacasce, and S. T. Merrifield, 2012b: Reconciling float-based and tracer-based estimates of lateral diffusivities. J. Mar. Res., 70, 569602, doi:10.1357/002224012805262743.

    • Search Google Scholar
    • Export Citation
  • Koszalka, I. M., and J. H. LaCasce, 2010: Lagrangian analysis by clustering. Ocean Dyn., 60, 957972, doi:10.1007/s10236-010-0306-2.

  • Koszalka, I. M., J. H. LaCasce, M. Andersson, K. Orvik, and C. Mauritzen, 2011: Surface circulation in the Nordic Seas from clustered drifters. Deep-Sea Res. I, 58, 468485, doi:10.1016/j.dsr.2011.01.007.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, doi:10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, doi:10.1357/002224003322201205.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., D. P. Marshall, and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res., 55, 483505, doi:10.1357/0022240973224346.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440, doi:10.1175/1520-0485-32.9.2425.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204, doi:10.1016/j.ocemod.2010.02.001.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, doi:10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, doi:10.1175/JPO2949.1.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., P.-M. Poulain, J. W. Pelton, and M. E. Maltrud, 2002: Eulerian and Lagrangian statistics from surface drifters and a high-resolution POP simulation in the North Atlantic. J. Phys. Oceanogr., 32, 24722491, doi:10.1175/1520-0485-32.9.2472.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr., 14, 15771589, doi:10.1175/1520-0485(1984)014<1577:TRRODA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Middleton, J. F., 1985: Drifter spectra and diffusivities. J. Mar. Res., 43, 3755, doi:10.1357/002224085788437334.

  • Nakamura, N., 2001: A new look at eddy diffusivity as a mixing diagnostic. J. Atmos. Sci., 58, 36853701, doi:10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., and S. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, M. R., D. W. Jacobsen, T. D. Ringler, M. W. Hecht, and M. E. Maltrud, 2015: Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model. Ocean Modell., 86, 93113, doi:10.1016/j.ocemod.2014.12.004.

    • Search Google Scholar
    • Export Citation
  • Plumb, R., and J. Mahlman, 1987: The zonally averaged transport characteristics of the GFDL general circulation/transport model. J. Atmos. Sci., 44, 298327, doi:10.1175/1520-0469(1987)044<0298:TZATCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poje, A., and G. Haller, 1999: Geometry of cross-stream mixing in a double-gyre ocean model. J. Phys. Oceanogr., 29, 16491665, doi:10.1175/1520-0485(1999)029<1649:GOCSMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., 2001: Adriatic sea surface circulation as derived from drifter data between 1990 and 1999. J. Mar. Syst., 29, 332, doi:10.1016/S0924-7963(01)00007-0.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5 (2), 136139.

  • Qin, X., E. van Sebille, and A. Sen Gupta, 2014: Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model. Ocean Modell., 76, 2030, doi:10.1016/j.ocemod.2014.02.002.

    • Search Google Scholar
    • Export Citation
  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ringler, T., M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud, 2013: A multi-resolution approach to global ocean modeling. Ocean Modell., 69, 211232, doi:10.1016/j.ocemod.2013.04.010.

    • Search Google Scholar
    • Export Citation
  • Sætre, R., 1999: Features of the central Norwegian shelf circulation. Cont. Shelf Res., 19, 18091831, doi:10.1016/S0278-4343(99)00041-2.

    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Siegenthaler, U., 1983: Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J. Geophys. Res., 88, 35993608, doi:10.1029/JC088iC06p03599.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and A. Gassmann, 2011: Conservative transport schemes for spherical geodesic grids: High-order flux operators for ODE-based time integration. Mon. Wea. Rev., 139, 29622975, doi:10.1175/MWR-D-10-05056.1.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., and B. T. Nadiga, 2014: Energy fluxes in the quasigeostrophic double gyre problem. J. Phys. Oceanogr., 44, 15051522, doi:10.1175/JPO-D-13-0216.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196212, doi:10.1112/plms/s2-20.1.196.

  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, A151, 421444, doi:10.1098/rspa.1935.0158.

  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, doi:10.1175/JPO-D-13-0120.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Veneziani, M., A. Griffa, A. M. Reynolds, Z. D. Garraffo, and E. P. Chassignet, 2005: Parameterizations of Lagrangian spin statistics and particle dispersion in the presence of coherent vortices. J. Mar. Res., 63, 10571083, doi:10.1357/002224005775247571.

    • Search Google Scholar
    • Export Citation
  • Wolfram, P. J., and O. B. Fringer, 2013: Mitigating horizontal divergence “checker-board” oscillations on unstructured triangular C-grids for nonlinear hydrostatic and nonhydrostatic flows. Ocean Modell., 69, 6478, doi:10.1016/j.ocemod.2013.05.007.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104, 13 23513 249, doi:10.1029/1999JC900062.

  • Zalesak, S., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362, doi:10.1016/0021-9991(79)90051-2.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., D. Lyzhkov, and N. Kuzmina, 2014: Drifter-derived estimates of lateral eddy diffusivity in the World Ocean with emphasis on the Indian Ocean and problems of parameterisation. Deep-Sea Res. I, 83, 111, doi:10.1016/j.dsr.2013.09.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 409 234 13
PDF Downloads 306 185 10

Diagnosing Isopycnal Diffusivity in an Eddying, Idealized Midlatitude Ocean Basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

View More View Less
  • 1 Theoretical Division, Climate, Ocean, and Sea Ice Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico
Restricted access

Abstract

Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s−1 in the region of western boundary current separation to O(103) m2 s−1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. A reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.

Denotes Open Access content.

Corresponding author address: Phillip J. Wolfram, Theoretical Division, Climate, Ocean, and Sea Ice Modeling, Los Alamos National Laboratory, P.O. Box 1663, T-3, MS-B216, Los Alamos, NM 87545. E-mail: pwolfram@lanl.gov

Abstract

Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s−1 in the region of western boundary current separation to O(103) m2 s−1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. A reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.

Denotes Open Access content.

Corresponding author address: Phillip J. Wolfram, Theoretical Division, Climate, Ocean, and Sea Ice Modeling, Los Alamos National Laboratory, P.O. Box 1663, T-3, MS-B216, Los Alamos, NM 87545. E-mail: pwolfram@lanl.gov
Save