• Andersen, M. L., and Coauthors, 2010: Spatial and temporal melt variability at Helheim Glacier, east Greenland, and its effect on ice dynamics. J. Geophys. Res., 115, F04041, doi:10.1029/2010JF001760.

    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., P. J. Kyba, and B. R. Sutherland, 2008: Fountains impinging on a density interface. J. Fluid Mech., 595, 115139, doi:10.1017/S0022112007009093.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Advances in Research and Applications, J. Chang, Eds., Methods in Computational Physics Series, Vol. 17, Elsevier, 173–265, doi:10.1016/B978-0-12-460817-7.50009-4.

  • Arakeri, J. H., D. Das, and J. Srinivasan, 2000: Bifurcation in a buoyant horizontal laminar jet. J. Fluid Mech., 412, 6173, doi:10.1017/S0022112000008181.

    • Search Google Scholar
    • Export Citation
  • Burden, R. L., and J. D. Faires, 2011: Numerical Analysis. Brooks/Cole, 872 pp.

  • Caulfield, C., and A. Woods, 1998: Turbulent gravitational convection from a point source in a non-uniformly stratified environment. J. Fluid Mech., 360, 229248, doi:10.1017/S0022112098008623.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, doi:10.1146/annurev-marine-120308-081105.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and P. Linden, 2014: Entrainment in two coalescing axisymmetric turbulent plumes. J. Fluid Mech., 752, R2, doi:10.1017/jfm.2014.389.

    • Search Google Scholar
    • Export Citation
  • Chauché, N., and Coauthors, 2014: Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 8, 14571468, doi:10.5194/tc-8-1457-2014.

    • Search Google Scholar
    • Export Citation
  • Chu, V. W., 2014: Greenland Ice Sheet hydrology: A review. Prog. Phys. Geogr., 38, 1954, doi:10.1177/0309133313507075.

  • Cowton, T., P. Nienow, A. Sole, J. Wadham, G. Lis, I. Bartholomew, D. Mair, and D. Chandler, 2013: Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res. Earth Surf., 118, 2941, doi:10.1029/2012JF002540.

    • Search Google Scholar
    • Export Citation
  • Cowton, T., D. Slater, A. Sole, D. Goldberg, and P. Nienow, 2015: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res. Oceans, 120, 796812, doi:10.1002/2014JC010324.

    • Search Google Scholar
    • Export Citation
  • Echelmeyer, K., T. Clarke, and W. Harrison, 1991: Surficial glaciology of Jakobshavns Isbræ, west Greenland: Part I. Surface morphology. J. Glaciol., 37, 368382.

    • Search Google Scholar
    • Export Citation
  • Ellison, T., and J. Turner, 1959: Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423448, doi:10.1017/S0022112059000738.

    • Search Google Scholar
    • Export Citation
  • Enderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. Angelen, and M. R. Broeke, 2014: An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett., 41, 866872, doi:10.1002/2013GL059010.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gladish, C. V., D. M. Holland, A. Rosing-Asvid, J. W. Behrens, and J. Boje, 2015: Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and renewal of Ilulissat Icefjord waters, 2001–14. J. Phys. Oceanogr., 45, 332, doi:10.1175/JPO-D-14-0044.1.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H., and D. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, doi:10.1017/S0954102089000490.

    • Search Google Scholar
    • Export Citation
  • Holland, D., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oceanogr., 23, 24282446, doi:10.1175/1520-0485(1993)023<2428:RFFAAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. Mcdougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, R., F. Straneo, and D. Sutherland, 2014: Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci., 7, 503508, doi:10.1038/ngeo2186.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1999: The impact of melting ice on ocean waters. J. Phys. Oceanogr., 29, 23702381, doi:10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, doi:10.1175/JPO-D-11-03.1.

    • Search Google Scholar
    • Export Citation
  • Joughin, I., R. B. Alley, and D. M. Holland, 2012: Ice-sheet response to oceanic forcing. Science, 338, 11721176, doi:10.1126/science.1226481.

    • Search Google Scholar
    • Export Citation
  • Kaye, N., 2008: Turbulent plumes in stratified environments: A review of recent work. Atmos.–Ocean, 46, 433441, doi:10.3137/AO923.2008.

    • Search Google Scholar
    • Export Citation
  • Kaye, N., and P. Linden, 2004: Coalescing axisymmetric turbulent plumes. J. Fluid Mech., 502, 4163, doi:10.1017/S0022112003007250.

  • Kimura, S., P. R. Holland, A. Jenkins, and M. Piggott, 2014: The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr., 44, 30993117, doi:10.1175/JPO-D-13-0219.1.

    • Search Google Scholar
    • Export Citation
  • Kjeldsen, K. K., J. Mortensen, J. Bendtsen, D. Petersen, K. Lennert, and S. Rysgaard, 2014: Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. J. Geophys. Res. Earth Surf., 119, 13101321, doi:10.1002/2013JF003034.

    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., R. M. Horton, C. M. Little, J. X. Mitrovica, M. Oppenheimer, D. J. Rasmussen, B. H. Strauss, and C. Tebaldi, 2014: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383406, doi:10.1002/2014EF000239.

    • Search Google Scholar
    • Export Citation
  • Linden, P., 2000: Convection in the environment. Perspectives in Fluid Dynamics, G. K. Batchelor, H. K. Moffatt, and M. G. Worster, Eds., Cambridge University Press, 289–345.

  • List, E., 1982: Turbulent jets and plumes. Annu. Rev. Fluid Mech., 14, 189212, doi:10.1146/annurev.fl.14.010182.001201.

  • Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res., 113, C08043, doi:10.1029/2007JC004368.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Jones, and C. Hill, 1998: Efficient ocean modeling using non-hydrostatic algorithms. J. Mar. Syst., 18, 115134, doi:10.1016/S0924-7963(98)00008-6.

    • Search Google Scholar
    • Export Citation
  • Mortensen, J., K. Lennert, J. Bendtsen, and S. Rysgaard, 2011: Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res., 116, C01013, doi:10.1029/2010JC006528.

    • Search Google Scholar
    • Export Citation
  • Mortensen, J., J. Bendtsen, R. Motyka, K. Lennert, M. Truffer, M. Fahnestock, and S. Rysgaard, 2013: On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. Oceans, 118, 13821395, doi:10.1002/jgrc.20134.

    • Search Google Scholar
    • Export Citation
  • Morton, B., G. Taylor, and J. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 123, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., L. Hunter, K. A. Echelmeyer, and C. Connor, 2003: Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36 (1), 5765, doi:10.3189/172756403781816374.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., W. P. Dryer, J. Amundson, M. Truffer, and M. Fahnestock, 2013: Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 51535158, doi:10.1002/grl.51011.

    • Search Google Scholar
    • Export Citation
  • Mugford, R., and J. Dowdeswell, 2011: Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords. J. Geophys. Res. Earth Surf., 116, F01023, doi:10.1029/2010JF001735.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., M. Koppes, and I. Velicogna, 2010: Rapid submarine melting of the calving faces of west Greenland glaciers. Nat. Geosci., 3, 187191, doi:10.1038/ngeo765.

    • Search Google Scholar
    • Export Citation
  • Salcedo-Castro, J., D. Bourgault, and B. Deyoung, 2011: Circulation induced by subglacial discharge in glacial fjords: Results from idealized numerical simulations. Cont. Shelf Res., 31, 13961406, doi:10.1016/j.csr.2011.06.002.

    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, doi:10.1002/jgrc.20142.

    • Search Google Scholar
    • Export Citation
  • Sciascia, R., C. Cenedese, D. Nicol, P. Heimbach, and F. Straneo, 2014: Impact of periodic intermediary flows on submarine melting of a Greenland glacier. J. Geophys. Res. Oceans, 119, 7078–7098, doi:10.1002/2014JC009953.

    • Search Google Scholar
    • Export Citation
  • Slater, D., P. Nienow, T. Cowton, D. Goldberg, and A. Sole, 2015: Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 2861–2868, doi:10.1002/2014GL062494.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 3643, doi:10.1038/nature12854.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nat. Geosci., 3, 182186, doi:10.1038/ngeo764.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. G. Curry, D. A. Sutherland, G. S. Hamilton, C. Cenedese, K. Våge, and L. A. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327, doi:10.1038/ngeo1109.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and Coauthors, 2012: Characteristics of ocean waters reaching Greenland’s glaciers. Ann. Glaciol., 53 (60), 202210, doi:10.3189/2012AoG60A059.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., and F. Straneo, 2012: Estimating ocean heat transports and submarine melt rates in Sermilik Fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol., 53 (60), 5058, doi:10.3189/2012AoG60A050.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., F. Straneo, and R. S. Pickart, 2014: Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. Oceans, 119, 37673791, doi:10.1002/2013JC009786.

    • Search Google Scholar
    • Export Citation
  • Syvitski, J., 1989: On the deposition of sediment within glacier-influenced fjords: Oceanographic controls. Mar. Geol., 85, 301329, doi:10.1016/0025-3227(89)90158-8.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1966: Jets and plumes with negative or reversing buoyancy. J. Fluid Mech., 26, 779792, doi:10.1017/S0022112066001526.

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Woods, A. W., 2010: Turbulent plumes in nature. Annu. Rev. Fluid Mech., 42, 391412, doi:10.1146/annurev-fluid-121108-145430.

  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53 (60), 229234, doi:10.3189/2012AoG60A139.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. M. Flexas, 2013: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653, doi:10.1002/grl.50825.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 585 322 15
PDF Downloads 402 222 17

Modeling Turbulent Subglacial Meltwater Plumes: Implications for Fjord-Scale Buoyancy-Driven Circulation

View More View Less
  • 1 Department of Geological Sciences, University of Oregon, Eugene, Oregon
  • | 2 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 3 Department of Geological Sciences, and Institute for Geophysics, The University of Texas at Austin, Austin, Texas
  • | 4 Department of Geology, University of Kansas, Lawrence, Kansas
Restricted access

Abstract

Fjord-scale circulation forced by rising turbulent plumes of subglacial meltwater has been identified as one possible mechanism of oceanic heat transfer to marine-terminating outlet glaciers. This study uses buoyant plume theory and a nonhydrostatic, three-dimensional ocean–ice model of a typical outlet glacier fjord in west Greenland to investigate the sensitivity of meltwater plume dynamics and fjord-scale circulation to subglacial discharge rates, ambient stratification, turbulent diffusivity, and subglacial conduit geometry. The terminal level of a rising plume depends on the cumulative turbulent entrainment and ambient stratification. Plumes with large vertical velocities penetrate to the free surface near the ice face; however, midcolumn stratification maxima create a barrier that can trap plumes at depth as they flow downstream. Subglacial discharge is varied from 1–750 m3 s−1; large discharges result in plumes with positive temperature and salinity anomalies in the upper water column. For these flows, turbulent entrainment along the ice face acts as a mechanism to vertically transport heat and salt. These results suggest that plumes intruding into stratified outlet glacier fjords do not always retain the cold, fresh signature of meltwater but may appear as warm, salty anomalies. Fjord-scale circulation is sensitive to subglacial conduit geometry; multiple point source and line plumes result in stronger return flows of warm water toward the glacier. Classic plume theory provides a useful estimate of the plume’s outflow depth; however, more complex models are needed to resolve the fjord-scale circulation and melt rates at the ice face.

Corresponding author address: Dustin Carroll, Department of Geological Sciences, University of Oregon, 1272 University of Oregon, Eugene, OR 97403-1272. E-mail: dcarroll@uoregon.edu

Abstract

Fjord-scale circulation forced by rising turbulent plumes of subglacial meltwater has been identified as one possible mechanism of oceanic heat transfer to marine-terminating outlet glaciers. This study uses buoyant plume theory and a nonhydrostatic, three-dimensional ocean–ice model of a typical outlet glacier fjord in west Greenland to investigate the sensitivity of meltwater plume dynamics and fjord-scale circulation to subglacial discharge rates, ambient stratification, turbulent diffusivity, and subglacial conduit geometry. The terminal level of a rising plume depends on the cumulative turbulent entrainment and ambient stratification. Plumes with large vertical velocities penetrate to the free surface near the ice face; however, midcolumn stratification maxima create a barrier that can trap plumes at depth as they flow downstream. Subglacial discharge is varied from 1–750 m3 s−1; large discharges result in plumes with positive temperature and salinity anomalies in the upper water column. For these flows, turbulent entrainment along the ice face acts as a mechanism to vertically transport heat and salt. These results suggest that plumes intruding into stratified outlet glacier fjords do not always retain the cold, fresh signature of meltwater but may appear as warm, salty anomalies. Fjord-scale circulation is sensitive to subglacial conduit geometry; multiple point source and line plumes result in stronger return flows of warm water toward the glacier. Classic plume theory provides a useful estimate of the plume’s outflow depth; however, more complex models are needed to resolve the fjord-scale circulation and melt rates at the ice face.

Corresponding author address: Dustin Carroll, Department of Geological Sciences, University of Oregon, 1272 University of Oregon, Eugene, OR 97403-1272. E-mail: dcarroll@uoregon.edu
Save