• Argo Science Team, 2001: The global array of profiling floats. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., GODAE Project Office, 248–258.

  • Axell, L. B., 2002: Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea. J. Geophys. Res., 107, C113204, doi:10.1029/2001JC000922.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr., 31, 31333145, doi:10.1175/1520-0485(2001)031<3133:STWELU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and K. Bolding, 2001: Comparative analysis of four second-moment turbulence closure models for the ocean mixed layer. J. Phys. Oceanogr., 31, 19431968, doi:10.1175/1520-0485(2001)031<1943:CAOFSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 21562179, doi:10.1175/1520-0485(1994)024<2156:AHVMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Alessio, J. S. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the ocean mixed layer. J. Phys. Oceanogr., 28, 16241641, doi:10.1175/1520-0485(1998)028<1624:ANSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Duan, A., C. Sui, and G. Wu, 2008: Simulation of local air-sea interaction in the great warm pool and its influence on Asian monsoon. J. Geophys. Res., 113, D22105, doi:10.1029/2008JD010520.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Grégoris, and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, doi:10.1029/JC095iC09p16179.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29, 480499, doi:10.1175/1520-0485(1999)029<0480:NSTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trownbridge, E. A. Terray, A. J. Pluddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, doi:10.1175/2008JPO4044.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Goh, G., and Y. Noh, 2013: Influence of the Coriolis force on the formation of a seasonal thermocline. Ocean Dyn., 63, 10831092, doi:10.1007/s10236-013-0645-x.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, doi:10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., Y. Chao, C. C. Ma, and R. Mechoso, 1995: Comparison of tropical Pacific temperature and current simulations with two vertical mixing schemes embedded in an ocean general circulation model and reference to observations. J. Geophys. Res., 100, 25152522, doi:10.1029/94JC03043.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model for Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, doi:10.1175/JPO-D-12-0105.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84103, doi:10.1175/JPO-D-14-0046.1.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, 2004: K-1 coupled GCM (MIROC) description. K-1 Model Developers Tech. Rep. 1, 34 pp.

  • Holdsworth, A. M., and P. G. Myers, 2015: The influence of high-frequency atmospheric forcing on the circulation and deep convection of the Labrador Sea. J. Climate, 28, 49804996, doi:10.1175/JCLI-D-14-00564.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, H., and T. Motoi, 1999: Reevaluation of the Takano–Onishi scheme for momentum advection on bottom relief in ocean models. J. Atmos. Oceanic Technol., 16, 19942010, doi:10.1175/1520-0426(1999)016<1994:ROTTOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2012: Ocean wave effects on the daily cycle in SST. J. Geophys. Res., 117, C00J32, doi:10.1029/2012JC007943.

  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2003: Climatological SST and MLD predictions from a global layered ocean model with an embedded mixed layer. J. Atmos. Oceanic Technol., 20, 16161632, doi:10.1175/1520-0426(2003)020<1616:CSAMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. J. Webb, D. Stainforth, and S. M. Paterson, 1991: The development of a free-surface Bryan–Cox–Semtner ocean model. J. Phys. Oceanogr., 21, 13331348, doi:10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101, 18 17518 182, doi:10.1029/96JC00861.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, doi:10.1029/2009GL037620.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note TN-460+STR, 105 pp.

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23252346, doi:10.1175/JCLI3740.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, doi:10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulation. Annu. Rev. Fluid Mech., 15, 391427, doi:10.1146/annurev.fl.15.010183.002135.

    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1993: Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res., 51, 737769, doi:10.1357/0022240933223945.

    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1997: Mixed layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 27, 121132, doi:10.1175/1520-0485(1997)027<0121:MLDDTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, M., K. Zahariev, and C. Garrett, 1995: Role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science, 270, 19551957, doi:10.1126/science.270.5244.1955.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, doi:10.1016/j.dsr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • Li, S., J. Song, and W. Fan, 2013: Effects of Langmuir circulation on upper ocean mixing in the South China Sea. Acta Oceanol. Sin., 32, 2833, doi:10.1007/s13131-013-0285-5.

    • Search Google Scholar
    • Export Citation
  • Li, X., Y. Chao, J. C. McWilliams, and L. L. Fu, 2001: A comparison of two vertical-mixing schemes in a Pacific Ocean general circulation model. J. Climate, 14, 13771398, doi:10.1175/1520-0442(2001)014<1377:ACOTVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, B., H. Liu, X. Lian, C. Guan, and D. Zhao, 2011: A coupled atmosphere–wave–ocean modeling system: Simulation of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132152, doi:10.1175/2010MWR3396.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulation. Spill Sci. Technol. Bull., 6, 225237, doi:10.1016/S1353-2561(01)00041-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17, 515526, doi:10.1007/PL00007929.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Min, H. S., and Y. Noh, 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34, 26302641, doi:10.1175/JPOJPO-2654.1.

    • Search Google Scholar
    • Export Citation
  • Moon, I. J., 2005: Impact of a coupled ocean wave–tide–circulation system on coastal modeling. Ocean Modell., 8, 203236, doi:10.1016/j.ocemod.2004.02.001.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and N. Suginohara, 2002: Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a World Ocean model. J. Phys. Oceanogr., 32, 12091227, doi:10.1175/1520-0485(2002)032<1209:EOBBLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, doi:10.1029/1999JC900068.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and W. S. Lee, 2008: Prediction of the mixed and mixing layer depths from an OGCM. J. Oceanogr., 64, 217225, doi:10.1007/s10872-008-0017-1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and S. Nakada, 2010: Examination of the particle flux from the convective mixed layer by large eddy simulation. J. Geophys. Res., 115, C05007, doi:10.1029/2009JC005669.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., C. J. Jang, T. Yamagata, P. C. Chu, and C. H. Kim, 2002: Simulation of more realistic upper ocean process from an OGCM with a new ocean mixed layer model. J. Phys. Oceanogr., 32, 12841307, doi:10.1175/1520-0485(2002)032<1284:SOMRUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, doi:10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Y. J. Kang, T. Matsuura, and S. Iizuka, 2005: Effect of the Prandtl number in the parameterization of vertical mixing in an OGCM of the tropical Pacific. Geophys. Res. Lett., 32, L23609, doi:10.1029/2005GL024540.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., G. Goh, S. Raasch, and M. Gryschka, 2009: Formation of a diurnal thermocline in the ocean mixed layer simulated by LES. J. Phys. Oceanogr., 39, 12441257, doi:10.1175/2008JPO4032.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., G. Goh, and S. Raasch, 2010: Examination of the mixed layer deepening process during convection using LES. J. Phys. Oceanogr., 40, 21892195, doi:10.1175/2010JPO4277.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., G. Goh, and S. Raasch, 2011a: Influence of Langmuir circulation on the deepening of the wind-mixed layer. J. Phys. Oceanogr., 41, 472484, doi:10.1175/2010JPO4494.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., E. Lee, D. H. Kim, S. Y. Hong, M. J. Kim, and M. L. Ou, 2011b: Prediction of diurnal variability of SST using an atmosphere-ocean mixed layer coupled model. J. Geophys. Res., 116, C11023, doi:10.1029/2011JC006970.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., 2002: Improved representation of upper-ocean dynamics and mixed layer depths in a model of the North Atlantic on switching from eddy-permitting to eddy-resolving grid resolution. J. Phys. Oceanogr., 32, 22772298, doi:10.1175/1520-0485(2002)032<2277:IROUOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models. J. Phys. Oceanogr., 11, 14431451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second order moments. J. Geophys. Res., 91, 66716681, doi:10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma, 2004: Wave-induced mixing in the upper ocean: Distribution and application in a global ocean general circulation model. Geophys. Res. Lett., 31, L11303, doi:10.1029/2004GL019824.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., and F. Ardhuin, 2009: Drift and mixing under the ocean surface revisited: Stratified conditions and model-data comparisons. J. Geophys. Res., 114, C02016, doi:10.1029/2007JC004466.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richards, K. J., S. P. Xie, and T. Miyama, 2009: Vertical mixing in the ocean and its impact on the coupled ocean–atmosphere system in the eastern tropical Pacific. J. Climate, 22, 37033718, doi:10.1175/2009JCLI2702.1.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18, 16011626, doi:10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sasaki, W., K. J. Richards, and J. J. Luo, 2012: Role of vertical mixing originating from small vertical scale structures above and within the equatorial thermocline in an OGCM. Ocean Modell., 57-58, 2942, doi:10.1016/j.ocemod.2012.09.002.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., and K. R. Ridgway, 2013: Seasonal mixed-layer dynamics in an eddy-resolving ocean circulation model. J. Geophys. Res. Oceans, 118, 33873405, doi:10.1002/jgrc.20250.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., 2005: Langmuir circulation. Marine Turbulence, H. Z. Baumert, J. H. Simpson, and J. Sündermann, Eds., Cambridge University Press, 277–282.

  • Skyllingstad, E. D., W. D. Smyth, J. N. Moum, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 527, doi:10.1175/1520-0485(1999)029<0005:UOTDAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. D. Smyth, and G. B. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 18661890, doi:10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515644, doi:10.1029/91JC03118.

  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12 64912 668, doi:10.1029/97JC03611.

  • Smith, J. A., 2001: Observations and theories of Langmuir circulation: A story of mixing. Fluid Mechanics and the Environment: Dynamical Approaches, J. L. Lumley, Ed., 295–314.

  • Smith, R. D., and J. C. McWilliams, 2003: Anisotropic horizontal viscosity for ocean models. Ocean Modell., 5, 129156, doi:10.1016/S1463-5003(02)00016-1.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, doi:10.1007/s10236-002-0012-9.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and A. Kattenberg, 1994: Embedding a mixed layer model into an ocean general circulation model of the Atlantic: The importance of surface mixing for heat flux and temperature. J. Geophys. Res., 99, 14 13914 157, doi:10.1029/94JC00813.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Tamura, H., Y. Miyazawa, and L.-Y. Oey, 2012: The Stokes drift and wave induced-mass flux in the North Pacific. J. Geophys. Res., 117, C08021, doi:10.1029/2012JC008113.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. Kitaigorodskii, 1996: Estimation of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Therry, G., and P. Lacarrére, 1983: Improving the eddy kinetic energy model for planetary boundary layer description. Bound.-Layer Meteor., 25, 6388, doi:10.1007/BF00122098.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, doi:10.1146/annurev.fluid.36.052203.071431.

  • Thorpe, S. A., T. R. Osborn, J. F. E. Jackson, A. J. Hall, and R. G. Lueck, 2003: Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122145, doi:10.1175/1520-0485(2003)033<0122:MOTITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, T. Iwao, T. Kuragano, and M. Kamachi, 2013: Improved analysis of seasonal-interannual fields using a global ocean data assimilation system. Theor. Appl. Mech. Japan, 61, 3148, doi:10.11345/nctam.61.31.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., M. Hirabara, H. Nakano, T. Yasuda, T. Motoi, and G. Yamanaka, 2011: Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): Simulation characteristics and variability in the Pacific sector. J. Oceanogr., 67, 449479, doi:10.1007/s10872-011-0050-3.

    • Search Google Scholar
    • Export Citation
  • Ueno, H., and I. Yasuda, 2000: Distribution and formation of the mesothermal structure (temperature inversion) in the North Pacific subarctic region. J. Geophys. Res., 105, 16 88516 897, doi:10.1029/2000JC900020.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res., 35, 711747, doi:10.1016/0198-0149(88)90027-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 0 0 0

Parameterization of Langmuir Circulation in the Ocean Mixed Layer Model Using LES and Its Application to the OGCM

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 2 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan
  • | 3 Research Institute of Applied Mechanics, Kyushu University, Fukuoka, Fukuoka, Japan
Restricted access

Abstract

The effect of Langmuir circulation (LC) on vertical mixing is parameterized in the ocean mixed layer model (OMLM), based on the analysis of large-eddy simulation (LES) results. Parameterization of LC effects is carried out in terms of the modifications of the mixing length scale as well as the inclusion of the contribution from the Stokes force in momentum and TKE equations. The performance of the new OMLM is examined by comparing with LES results, together with sensitivity tests for empirical constants used in the parameterization. The new OMLM is then applied to the ocean general circulation model (OGCM) Meteorological Research Institute Community Ocean Model (MRI.COM), and its effect is investigated. The new OMLM helps to correct too shallow mixed layer depths (MLDs) in the high-latitude ocean, which has been a common error in most OGCMs, without making the thermocline in the tropical ocean more diffused. The parameterization of LC effects is found to affect mainly the high-latitude ocean, in which the MLD is shallow in summer and stratification is weak in winter.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: noh@yonsei.ac.kr

Abstract

The effect of Langmuir circulation (LC) on vertical mixing is parameterized in the ocean mixed layer model (OMLM), based on the analysis of large-eddy simulation (LES) results. Parameterization of LC effects is carried out in terms of the modifications of the mixing length scale as well as the inclusion of the contribution from the Stokes force in momentum and TKE equations. The performance of the new OMLM is examined by comparing with LES results, together with sensitivity tests for empirical constants used in the parameterization. The new OMLM is then applied to the ocean general circulation model (OGCM) Meteorological Research Institute Community Ocean Model (MRI.COM), and its effect is investigated. The new OMLM helps to correct too shallow mixed layer depths (MLDs) in the high-latitude ocean, which has been a common error in most OGCMs, without making the thermocline in the tropical ocean more diffused. The parameterization of LC effects is found to affect mainly the high-latitude ocean, in which the MLD is shallow in summer and stratification is weak in winter.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: noh@yonsei.ac.kr
Save