• Alford, M., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159163, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1989: The stability of unbounded two- and three-dimensional flows subject to body forces: Some exact solutions. J. Fluid Mech., 198, 275292, doi:10.1017/S0022112089000133.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896911, doi:10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101–115, doi:10.1146/annurev-marine-010213-135138.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. N. Thomas, 2011: Enhanced tubulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, doi:10.1002/2013GL058193.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Firing, E., and J. Hummon, 2010: Ship-mounted acoustic Doppler current profilers. GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, IOCCP Rep. 14, ICPO Publication Series 134, 1–11.

  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Lien, R. C., E. A. D’Asaro, and G. Dairiki, 1998: Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence. J. Fluid Mech., 362, 177198, doi:10.1017/S0022112098008787.

    • Search Google Scholar
    • Export Citation
  • Lombardo, C. P., and M. C. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94, 62736284, doi:10.1029/JC094iC05p06273.

    • Search Google Scholar
    • Export Citation
  • Lueck, R., and J. Picklo, 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7, 756768, doi:10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2009: The Climode field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 1337–1350, doi:10.1175/2009BAMS2706.1.

  • Mooers, C. N. K., 1975: Several effects of a baroclinic current on the cross-stream propagation of inertial-internal waves. Geophys. Fluid Dyn., 6, 245275, doi:10.1080/03091927509365797.

    • Search Google Scholar
    • Export Citation
  • Morison, J., R. Anderson, N. Larson, E. D’Asaro, and T. Boyd, 1994: The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Oceanic Technol., 11, 11511164, doi:10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ou, H., 1984: Geostrophic adjustment: A mechanism for frontogenesis? J. Phys. Oceanogr., 14, 9941000, doi:10.1175/1520-0485(1984)014<0994:GAAMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2013: A generalized mathematical model of geostrophic adjustment and frontogenesis: Uniform potential vorticity. J. Fluid Mech., 736, 366413, doi:10.1017/jfm.2013.526.

    • Search Google Scholar
    • Export Citation
  • Shay, T. J., and M. C. Gregg, 1986: Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 17771798, doi:10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, doi:10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24, 14191424, doi:10.1175/1520-0485(1994)024<1419:MLRDTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, J., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 212 pp.

  • Taylor, J., and R. Ferrari, 2009: The role of secondary shear instabilities in the equilibration of symmetric instability. J. Fluid Mech., 622, 103113, doi:10.1017/S0022112008005272.

    • Search Google Scholar
    • Export Citation
  • Taylor, J., and R. Ferrari, 2010: Buoyancy and wind-driven convection at a mixed-layer density fronts. J. Phys. Oceanogr., 40, 12221242, doi:10.1175/2010JPO4365.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, doi:10.1175/JPO2830.1.

  • Thomas, L. N., and J. R. Taylor, 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18606, doi:10.1029/2010GL044680.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 84
PDF Downloads 33 33 33

Symmetric Instability, Inertial Oscillations, and Turbulence at the Gulf Stream Front

View More View Less
  • 1 Department of Environmental Earth System Science, Stanford University, Stanford, California
  • | 2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
  • | 3 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 4 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • | 5 Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

The passage of a winter storm over the Gulf Stream observed with a Lagrangian float and hydrographic and velocity surveys provided a unique opportunity to study how the interaction of inertial oscillations, the front, and symmetric instability (SI) shapes the stratification, shear, and turbulence in the upper ocean under unsteady forcing. During the storm, the rapid rise and rotation of the winds excited inertial motions. Acting on the front, these sheared motions modulate the stratification in the surface boundary layer. At the same time, cooling and downfront winds generated a symmetrically unstable flow. The observed turbulent kinetic energy dissipation exceeded what could be attributed to atmospheric forcing, implying SI drew energy from the front. The peak excess dissipation, which occurred just prior to a minimum in stratification, surpassed that predicted for steady SI turbulence, suggesting the importance of unsteady dynamics. The measurements are interpreted using a large-eddy simulation (LES) and a stability analysis configured with parameters taken from the observations. The stability analysis illustrates how SI more efficiently extracts energy from a front via shear production during periods when inertial motions reduce stratification. Diagnostics of the energetics of SI from the LES highlight the temporal variability in shear production but also demonstrate that the time-averaged energy balance is consistent with a theoretical scaling that has previously been tested only for steady forcing. As the storm passed and the winds and cooling subsided, the boundary layer restratified and the thermal wind balance was reestablished in a manner reminiscent of geostrophic adjustment.

Corresponding author address: Leif Thomas, Stanford University, 473 Via Ortega, Stanford, CA 94305. E-mail: leift@stanford.edu

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Abstract

The passage of a winter storm over the Gulf Stream observed with a Lagrangian float and hydrographic and velocity surveys provided a unique opportunity to study how the interaction of inertial oscillations, the front, and symmetric instability (SI) shapes the stratification, shear, and turbulence in the upper ocean under unsteady forcing. During the storm, the rapid rise and rotation of the winds excited inertial motions. Acting on the front, these sheared motions modulate the stratification in the surface boundary layer. At the same time, cooling and downfront winds generated a symmetrically unstable flow. The observed turbulent kinetic energy dissipation exceeded what could be attributed to atmospheric forcing, implying SI drew energy from the front. The peak excess dissipation, which occurred just prior to a minimum in stratification, surpassed that predicted for steady SI turbulence, suggesting the importance of unsteady dynamics. The measurements are interpreted using a large-eddy simulation (LES) and a stability analysis configured with parameters taken from the observations. The stability analysis illustrates how SI more efficiently extracts energy from a front via shear production during periods when inertial motions reduce stratification. Diagnostics of the energetics of SI from the LES highlight the temporal variability in shear production but also demonstrate that the time-averaged energy balance is consistent with a theoretical scaling that has previously been tested only for steady forcing. As the storm passed and the winds and cooling subsided, the boundary layer restratified and the thermal wind balance was reestablished in a manner reminiscent of geostrophic adjustment.

Corresponding author address: Leif Thomas, Stanford University, 473 Via Ortega, Stanford, CA 94305. E-mail: leift@stanford.edu

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Save