• Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, doi:10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Armi, L., and H. Stommel, 1983: Four views of a portion of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 13, 828857, doi:10.1175/1520-0485(1983)013<0828:FVOAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., K. L. Sheen, A. C. Naveira Garabato, D. A. Smeed, and S. N. Waterman, 2013: Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean. J. Phys. Oceanogr., 43, 22882308, doi:10.1175/JPO-D-12-0222.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1994: Diapycnal mixing in the ocean: The Osborn–Cox model. J. Phys. Oceanogr., 24, 25602576, doi:10.1175/1520-0485(1994)024<2560:DMITOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 3648, doi:10.2307/2685844.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and K. L. Polzin, 2005: Finescale structure of the TS relation in the eastern North Atlantic. J. Phys. Oceanogr., 35, 14371454, doi:10.1175/JPO2763.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy mixing across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21, 27702789, doi:10.1175/2007JCLI1510.1.

    • Search Google Scholar
    • Export Citation
  • Forryan, A., A. C. Naveira Garabato, K. L. Polzin, and S. N. Waterman, 2015: Rapid injection of near-inertial shear into the stratified upper ocean at an Antarctic Circumpolar Current front. Geophys. Res. Lett., 42, 3431–3441, doi:10.1002/2015GL063494.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: Stirring and mixing: What are the rate-controlling processes? Stirring to Mixing in a Stratified Ocean: Proc. ‘Aha Huliko‘a Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 1–8.

  • Held, I., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and S. S. Kristmannsson, 1984: Stirring and transport of tracer fields by geostrophic turbulence. J. Fluid Mech., 141, 2750, doi:10.1017/S0022112084000720.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. C. Marshall, 2008: Control of lower limb circulation in the Southern Ocean by dianeutral mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, doi:10.1175/2008JPO3878.1.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, doi:10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1977: A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7, 626629, doi:10.1175/1520-0485(1977)007<0626:ANOTLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kilbourne, B. F., and J. B. Girton, 2015: Quantifying high-frequency wind energy flux into near-inertial motions in the southeast Pacific. J. Phys. Oceanogr., 45, 369386, doi:10.1175/JPO-D-14-0076.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., 40, 16901709, doi:10.1175/2010JPO4303.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Estimating mesoscale eddy diffusion coefficients from satellite observations. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and K. Speer, 2010: Topography, jets, and eddy mixing in the Southern Ocean. J. Mar. Res., 68, 479502, doi:10.1357/002224010794657227.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. G. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., P. Niiler, L. Centurioni, M.-H. Rio, and O. Melnichenko, 2009: Mean dynamic topography of the ocean from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919, doi:10.1175/2009JTECHO672.1.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., N. L. Bindoff, and S. R. Rintoul, 2011: Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J. Atmos. Oceanic Technol., 28, 548568, doi:10.1175/2010JTECHO790.1.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., 2009: Cruise report RRS James Cook JC029 (SOFine). National Oceanography Centre Southampton Cruise Rep. 35, 216 pp.

  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, A. J. Watson, and W. Roether, 2007: Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature, 447, 194197, doi:10.1038/nature05832.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, doi:10.1175/2010JPO4315.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321335, doi:10.1080/03091927208236085.

  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, doi:10.1175/JPO-2669.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., and E. T. Montgomery, 1996: Deep microstructure profiling with the High Resolution Profiler. Proc. Microstructure Sensors Workshop, Mt. Hood, OR, Office of Naval Research, 109115.

  • Polzin, K. L., and R. Ferrari, 2004: Isopycnal dispersion in NATRE. J. Phys. Oceanogr., 34, 247257, doi:10.1175/1520-0485(2004)034<0247:IDIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Rintoul, S. R., and A. C. Naveira Garabato, 2013: Dynamics of the Southern Ocean circulation. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Academic Press, 471–488.

  • Sallée, J.-B., 2013: Cruise report JR 281: RRS James Clark Ross, 14 March–26 April 2013. British Antarctic Survey, 150 pp. [Available online at https://www.bodc.ac.uk/data/information_and_inventories/cruise_inventory/report/jr281.pdf.]

  • Sallée, J.-B., K. Speer, and S. R. Rintoul, 2011: Mean flow and topographic control on surface eddy mixing in the Southern Ocean. J. Mar. Res., 69, 753777, doi:10.1357/002224011799849408.

    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, doi:10.1002/jgrc.20217.

    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2014: Changes in Southern Ocean abyssal mixing on climatic timescales. Nat. Geosci., 7, 577582, doi:10.1038/ngeo2200.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., L. D. Talley, T. K. Chereskin, R. Fine, and J. Holte, 2010: Antarctic Intermediate Water and Subantarctic Mode Water formation in the southeast Pacific: The role of turbulent mixing. J. Phys. Oceanogr., 40, 15581574, doi:10.1175/2010JPO4114.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, doi:10.1175/2008JPO3880.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469, 1348, doi:10.1017/S0022112002001763.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., and G. Forget, 2013: Global distribution and formation of mode waters. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Academic Press, 211–226.

  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and dianeutral mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196211, doi:10.1112/plms/s2-20.1.196.

  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., 2011: Cruise report JR 276 “DIMES UK 2.5”: RRS James Clark Ross, 9 April 2011–26 April 2011. British Antarctic Survey, 115 pp. [Available online at https://www.bodc.ac.uk/data/information_and_inventories/cruise_inventory/report/jr276.pdf.]

  • Watson, A. J., 2012: Cruise report JC 69 “DIMES UK 3”: RRS James Cook, 31 January–22 March 2012. British Oceanographic Data Centre, 137 pp. [Available online at https://www.bodc.ac.uk/data/information_and_inventories/cruise_inventory/report/jc069.pdf.]

  • Wilson, C., and R. G. Williams, 2004: Why are eddy fluxes of potential vorticity difficult to parameterize? J. Phys. Oceanogr., 34, 142155, doi:10.1175/1520-0485(2004)034<0142:WAEFOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: Where do ocean heat fluxes matter? J. Geophys. Res., 104, 13 23513 249, doi:10.1029/1999JC900062.

  • Zika, J. D., B. M. Sloyan, and T. J. McDougall, 2009: Diagnosing the Southern Ocean overturning from tracer fields. J. Phys. Oceanogr., 39, 29262940, doi:10.1175/2009JPO4052.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010: A tracer-contour inverse method for estimating ocean circulation and mixing. J. Phys. Oceanogr., 40, 2647, doi:10.1175/2009JPO4208.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 57
PDF Downloads 9 9 9

A Microscale View of Mixing and Overturning across the Antarctic Circumpolar Current

View More View Less
  • 1 University of Southampton, National Oceanography Centre, Southampton, United Kingdom
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 3 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 4 University of Southampton, National Oceanography Centre, Southampton, United Kingdom
Restricted access

Abstract

The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.

Corresponding author address: Alberto C. Naveira Garabato, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH United Kingdom. E-mail: acng@noc.soton.ac.uk

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Abstract

The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.

Corresponding author address: Alberto C. Naveira Garabato, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH United Kingdom. E-mail: acng@noc.soton.ac.uk

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Save