• Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, T., and R. Dobosy, 1992: A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Bound.-Layer Meteor., 59, 257278, doi:10.1007/BF00119816.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air-sea interaction. Ocean Engineering Science, B. LeMehaute and D. M. Hanes, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 9, John Wiley and Sons, 239–292.

  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489515, doi:10.1023/A:1002054820455.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2006: Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation. J. Geophys. Res., 111, D23S20, doi:10.1029/2006JD007597.

    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332, doi:10.1175/2010JPO4420.1.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., F. Hansen, and M. Courtney, 1993: Directional attributes of the ocean surface wind vector. J. Geophys. Res., 98, 16 57116 582, doi:10.1029/93JC01439.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, doi:10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, doi:10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., L. Bariteau, C. W. Fairall, J. E. Hare, D. Helmig, J. Hueber, and E. K. Lang, 2011: Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J. Geophys. Res., 116, D13110, doi:10.1029/2010JD015502.

    • Search Google Scholar
    • Export Citation
  • Högström, U., and A. Smedman-Högström , 1984: The wind regime in coastal areas with special reference to results obtained from the Swedish Wind Energy Program. Bound.-Layer Meteor., 30, 351373, doi:10.1007/BF00121961.

    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Rutgersson, E. Sahlée, A.-S. Smedman, T. S. Hristov, W. M. Drennan, and K. K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, doi:10.1007/s10546-012-9776-8.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., S. R. Semmer, and G. Maclean, 2015: Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing. Bound.-Layer Meteor., 155, 371395, doi:10.1007/s10546-015-0010-3.

    • Search Google Scholar
    • Export Citation
  • Hristov, T., and J. Ruiz-Plancarte, 2014: Dynamic balances in a wavy boundary layer. J. Phys. Oceanogr., 44, 31853194, doi:10.1175/JPO-D-13-0209.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1973: The standard error of time-averaged estimates of climatic means. J. Appl. Meteor., 12, 10661069, doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2010: Computing turbulent fluxes near the surface: Needed improvements. Agric. For. Meteor., 150, 501509, doi:10.1016/j.agrformet.2010.01.015.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and C. K. Thomas, 2015: Surface stress with non-stationary weak winds and stable stratification. Bound.-Layer Meteor., doi:10.1007/s10546-015-0111-z, in press.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Sun, T. L. Crawford, G. Crescenti, and P. Frederickson, 2001: Surface stress in offshore flow and quasi-frictional decoupling. J. Geophys. Res., 106, 20 62920 639, doi:10.1029/2000JD000159.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., C. K. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteor., 147, 179199, doi:10.1007/s10546-012-9782-x.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, and E. L Andreas, 2014: Low-level wind maxima and structure of the stably stratified boundary layer in the coastal zone. J. Appl. Meteor. Climatol., 53, 363376, doi:10.1175/JAMC-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Martin, S., and J. Bange, 2014: The influence of aircraft speed variations on sensible heat-flux measurements by different airborne systems. Bound.-Layer Meteor., 150, 153166, doi:10.1007/s10546-013-9853-7.

    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., and J. A. Smith, 1998: Removing wave effects from the wind stress vector. J. Geophys. Res., 103, 13631374, doi:10.1029/97JC02571.

    • Search Google Scholar
    • Export Citation
  • Sahlée, E., A. Rutgersson, E. Podgrajsek, and H. Bergström, 2014: Influence from surrounding land on the turbulence measurements above a lake. Bound.-Layer Meteor., 150, 235258, doi:10.1007/s10546-013-9868-0.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O’Niell, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566, doi:10.1175/JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Shah, S., and E. Bou-Zeid, 2014: Direct numerical simulations of turbulent Ekman layers with increasing static stability: Modifications to the bulk structure and second-order statistics. J. Fluid Mech., 760, 494539, doi:10.1017/jfm.2014.597.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., R. M. Samelson, L. Mahrt, and P. Barbour, 2005: A numerical modeling study of warm offshore flow over cool water. Mon. Wea. Rev., 133, 345361, doi:10.1175/MWR-2845.1.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., M. Tjernström, and U. Hogström, 1994: The near-neutral marine atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci., 51, 33993411, doi:10.1175/1520-0469(1994)051<3399:TNNMAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., H. Bergström, and B. Grisogono, 1997a: Evolution of stable internal boundary layers over a cold sea. J. Geophys. Res., 102, 10911099, doi:10.1029/96JC02782.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., U. Högström, and H. Bergström, 1997b: The turbulence regime of a very stable marine airflow with quasi-frictional decoupling. J. Geophys. Res., 102, 21 04921 059, doi:10.1029/97JC01070.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, doi:10.1175/2007JAS2427.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. Vandemark, L. Mahrt, D. Vickers, T. Crawford, and C. Vogel, 2001: Momentum transfer over the coastal zone. J. Geophys. Res., 106, 12 43712 488, doi:10.1029/2000JD900696.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Uz, B., M. A. Donelan, T. Hara, and E. J. Bock, 2002: Laboratory studies of wind stress over surface waves. Bound.-Layer Meteor., 102, 301331, doi:10.1023/A:1013119313063.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Fetch limited drag coefficients. Bound.-Layer Meteor., 85, 5379, doi:10.1023/A:1000472623187.

  • Vickers, D., and L. Mahrt, 2006: Evaluation of the air-sea bulk formula and sea-surface temperature variability. J. Geophys. Res., 111, C05002, doi:10.1029/2005JC003323.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, and E. L Andreas, 2013: Estimates of the 10-m neutral drag coefficient from aircraft eddy-covariance measurements. J. Phys. Oceanogr., 43, 301310, doi:10.1175/JPO-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, and E. L Andreas, 2015: Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability. J. Appl. Meteor. Climatol., 54, 691703, doi:10.1175/JAMC-D-14-0099.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 627 pp.

  • Williams, A., S. Chambers, and S. Griffiths, 2013: Bulk mixing and decoupling of the stable nocturnal boundary layer characterized using a ubiquitous natural tracer. Bound.-Layer Meteor., 149, 381402, doi:10.1007/s10546-013-9849-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 6 6 6

Coastal Zone Surface Stress with Stable Stratification

View More View Less
  • 1 NorthWest Research Associates Inc., Corvallis, Oregon
  • | 2 NorthWest Research Associates Inc., Lebanon, New Hampshire
  • | 3 Avery Point Department of Marine Sciences, University of Connecticut, Groton, Connecticut
  • | 4 NorthWest Research Associates Inc., Corvallis, Oregon
  • | 5 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Summertime eddy correlation measurements from an offshore tower are analyzed to investigate the dependence of the friction velocity for stable conditions on the mean wind speed V, air–sea difference of virtual potential temperature δθυ, and nonstationary submeso motions. The quantity δθυ sometimes exceeds 3°C, usually because of the advection of warm air from land over cooler water at this site. Thin stable boundary layers result. Unexpectedly, does not depend systematically on the stratification δθυ even for weak winds. For weak winds, increases systematically with increasing submeso variations of the wind. The relationship for a given V is greater in nonstationary conditions. Additionally, this study examines as a function of wind direction. The relationship appears to be affected by swell direction for weak winds and advection from land for short fetches.

Corresponding author address: L. Mahrt, 2171 NW Kari Pl., Corvallis, OR 97330. E-mail: mahrt@nwra.com

Abstract

Summertime eddy correlation measurements from an offshore tower are analyzed to investigate the dependence of the friction velocity for stable conditions on the mean wind speed V, air–sea difference of virtual potential temperature δθυ, and nonstationary submeso motions. The quantity δθυ sometimes exceeds 3°C, usually because of the advection of warm air from land over cooler water at this site. Thin stable boundary layers result. Unexpectedly, does not depend systematically on the stratification δθυ even for weak winds. For weak winds, increases systematically with increasing submeso variations of the wind. The relationship for a given V is greater in nonstationary conditions. Additionally, this study examines as a function of wind direction. The relationship appears to be affected by swell direction for weak winds and advection from land for short fetches.

Corresponding author address: L. Mahrt, 2171 NW Kari Pl., Corvallis, OR 97330. E-mail: mahrt@nwra.com
Save