• Bamber, J., M. van den Broeke, J. Ettema, J. Lenaerts, and E. Rignot, 2012: Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, doi:10.1029/2012GL052552.

    • Search Google Scholar
    • Export Citation
  • Bartholomaus, T. C., C. F. Larsen, and S. O. Neel, 2013: Does calving matter? Evidence for significant submarine melt. Earth Planet. Sci. Lett., 380, 2130, doi:10.1016/j.epsl.2013.08.014.

    • Search Google Scholar
    • Export Citation
  • Carroll, D., D. A. Sutherland, E. L. Shroyer, J. D. Nash, G. A. Catania, and L. A. Stearns, 2015: Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr., 45, 21692185, doi:10.1175/JPO-D-15-0033.1.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and P. F. Linden, 2014: Entrainment in two coalescing axisymmetric turbulent plumes. J. Fluid Mech., 752, R2, doi:10.1017/jfm.2014.389.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2011: Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Howat, I. M., I. Joughin, and T. A. Scambos, 2007: Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 15591561, doi:10.1126/science.1138478.

    • Search Google Scholar
    • Export Citation
  • Hunt, G. R., and N. G. Kaye, 2001: Virtual origin correction for lazy turbulent plumes. J. Fluid Mech., 435, 377396, doi:10.1017/S0022112001003871.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, doi:10.1175/JPO-D-11-03.1.

    • Search Google Scholar
    • Export Citation
  • Kaye, N., and P. Linden, 2004: Coalescing axisymmetric turbulent plumes. J. Fluid Mech., 502, 4163, doi:10.1017/S0022112003007250.

  • Kimura, S., P. Holland, A. Jenkins, and M. Piggott, 2014: The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr., 44, 30993117, doi:10.1175/JPO-D-13-0219.1.

    • Search Google Scholar
    • Export Citation
  • Mortensen, J., K. Lennert, J. Bendtsen, and S. Rysgaard, 2011: Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res., 116, C01013, doi:10.1029/2010JC006528.

    • Search Google Scholar
    • Export Citation
  • Mortensen, J., J. Bendtsen, R. J. Motyka, K. Lennert, M. Truffer, M. Fahnestock, and S. Rysgaard, 2013: On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. Oceans, 118, 13821395, doi:10.1002/jgrc.20134.

    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 123, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., L. Hunter, K. A. Echelmeyer, and C. Connor, 2003: Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol., 36, 5765, doi:10.3189/172756403781816374.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., M. Truffer, M. Fahnestock, J. Mortensen, S. Rysgaard, and I. Howat, 2011: Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116, F01007, doi:10.1029/2009JF001632.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., W. P. Dryer, J. Amundson, M. Truffer, and M. Fahnestock, 2013: Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 51535158, doi:10.1002/grl.51011.

    • Search Google Scholar
    • Export Citation
  • O’Leary, M., and P. Christoffersen, 2013: Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere, 7, 119128, doi:10.5194/tc-7-119-2013.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990, doi:10.1126/science.1121381.

    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, doi:10.1002/jgrc.20142.

    • Search Google Scholar
    • Export Citation
  • Sciascia, R., C. Cenedese, D. Nicolí, P. Heimbach, and F. Straneo, 2014: Impact of periodic intermediary flows on submarine melting of a Greenland glacier. J. Geophys. Res. Oceans, 119, 70787098, doi:10.1002/2014JC009953.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Slater, D. A., P. W. Nienow, T. R. Cowton, D. N. Goldberg, and A. J. Sole, 2015: Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 28612868, doi:10.1002/2014GL062494.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 3643, doi:10.1038/nature12854.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and C. Cenedese, 2015: The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89112, doi:10.1146/annurev-marine-010213-135133.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. Hamilton, D. Sutherland, L. Stearns, F. Davidson, M. Hammill, G. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nat. Geosci., 3, 182186, doi:10.1038/ngeo764.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. Curry, D. Sutherland, G. Hamilton, C. Cenedese, K. Vage, and L. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327, doi:10.1038/ngeo1109.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and Coauthors, 2013: Challenges to understand the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteor. Soc., 94, 11311144, doi:10.1175/BAMS-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Vieli, A., and F. Nick, 2011: Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surv. Geophys., 32, 437458, doi:10.1007/s10712-011-9132-4.

    • Search Google Scholar
    • Export Citation
  • Wille, R., and H. Fernholz, 1965: Report on the first European mechanics colloquium, on the Coandă effect. J. Fluid Mech., 23, 801819, doi:10.1017/S0022112065001702.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial runoff. Ann. Glaciol., 53, 229234, doi:10.3189/2012AoG60A139.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. M. Flexas, 2013: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653, doi:10.1002/grl.50825.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 3 3 3

Impact of Two Plumes’ Interaction on Submarine Melting of Tidewater Glaciers: A Laboratory Study

View More View Less
  • 1 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
Restricted access

Abstract

Idealized laboratory experiments investigate the glacier–ocean boundary dynamics near a vertical glacier in a two-layer stratified fluid. Discharge of meltwater runoff at the base of the glacier (subglacial discharge) enhances submarine melting. In the laboratory, the effect of multiple sources of subglacial discharge is simulated by introducing freshwater at freezing temperature from two point sources at the base of an ice block representing the glacier. The buoyant plumes of cold meltwater and subglacial discharge water entrain warm ambient water, rise vertically, and interact within a layer of depth H2 if the distance between the sources x0 is smaller than H2α/0.35, where α is the entrainment constant. The plume water detaches from the glacier face at the interface between the two layers and/or at the free surface, as confirmed by previous numerical studies and field observations. A plume model is used to explain the observed nonmonotonic dependence of submarine melting on the sources’ separation. The distance between the two sources influences the entrainment of warm water in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Two interacting plumes located very close together are observed to melt approximately half as much as two independent plumes. The inclusion, or parameterization, of the dynamics regulating multiple plumes’ interaction is therefore necessary for a correct estimate of submarine melting. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation.

Corresponding author address: Claudia Cenedese, Physical Oceanography Department, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543. E-mail: ccenedese@whoi.edu

Abstract

Idealized laboratory experiments investigate the glacier–ocean boundary dynamics near a vertical glacier in a two-layer stratified fluid. Discharge of meltwater runoff at the base of the glacier (subglacial discharge) enhances submarine melting. In the laboratory, the effect of multiple sources of subglacial discharge is simulated by introducing freshwater at freezing temperature from two point sources at the base of an ice block representing the glacier. The buoyant plumes of cold meltwater and subglacial discharge water entrain warm ambient water, rise vertically, and interact within a layer of depth H2 if the distance between the sources x0 is smaller than H2α/0.35, where α is the entrainment constant. The plume water detaches from the glacier face at the interface between the two layers and/or at the free surface, as confirmed by previous numerical studies and field observations. A plume model is used to explain the observed nonmonotonic dependence of submarine melting on the sources’ separation. The distance between the two sources influences the entrainment of warm water in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Two interacting plumes located very close together are observed to melt approximately half as much as two independent plumes. The inclusion, or parameterization, of the dynamics regulating multiple plumes’ interaction is therefore necessary for a correct estimate of submarine melting. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation.

Corresponding author address: Claudia Cenedese, Physical Oceanography Department, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543. E-mail: ccenedese@whoi.edu
Save