• Badulin, S. I., A. N. Pushkarev, D. Resio, and V. E. Zakharov, 2005: Self-similarity of wind-driven seas. Nonlinear Processes Geophys., 12, 891946, doi:10.5194/npg-12-891-2005.

    • Search Google Scholar
    • Export Citation
  • Badulin, S. I., A. V. Babanin, D. Resio, and V. Zakharov, 2007: Weakly turbulent laws of wind–wave growth. J. Fluid Mech., 591, 339378, doi:10.1017/S0022112007008282.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 49715029, doi:10.1029/JC092iC05p04971.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562, doi:10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Donnelly, W. J., J. R. Carswell, R. E. McIntosh, P. S. Chang, J. Wilkerson, F. Marks, and P. G. Black, 1999: Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res., 104, 11 48511 497, doi:10.1029/1998JC900030.

    • Search Google Scholar
    • Export Citation
  • Fois, F., P. Hoogeboom, F. Le Chevalier, and A. Stoffelen, 2015: Future ocean scatterometry: On the use of cross-polar scattering to observe very high wind. IEEE Trans. Geosci. Remote Sens., 53, 50095020, doi:10.1109/TGRS.2015.2416203.

    • Search Google Scholar
    • Export Citation
  • Gagnaire-Renou, E., M. Benoit, and S. I. Badulin, 2011: On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669, 178213, doi:10.1017/S0022112010004921.

    • Search Google Scholar
    • Export Citation
  • García-Nava, H., F. J. Ocampo-Torres, P. Osuna, and M. A. Donelan, 2009: Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res., 114, C12008, doi:10.1029/2009JC005389.

    • Search Google Scholar
    • Export Citation
  • Gower, J. F. R., 1996: Intercomparison of wave and wind data from TOPEX/POSEIDON. J. Geophys. Res., 101, 38173829, doi:10.1029/95JC03281.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsch. Hydrogr. Z., 12, 1–95.

  • Hasselmann, K., R. K. Raney, W. J. Plant, W. Alpers, R. A. Shuchman, D. R. Lyzenga, C. L. Rufenach, and M. J. Tucker, 1985: Theory of synthetic aperture radar ocean imaging: A MARSEN view. J. Geophys. Res., 90, 46594686, doi:10.1029/JC090iC03p04659.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., C. Wackerman, S. Falchetti, and S. Maresca, 2013: Tropical cyclone winds retrieved from synthetic aperture radar. Oceanography, 26, 4657, doi:10.5670/oceanog.2013.30.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2006: Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res., 111, C02005, doi:10.1029/2005JC003180.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2009: Estimating the effective energy transfer velocity at air-sea interface. J. Geophys. Res., 114, C11011, doi:10.1029/2009JC005497.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2012: Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens., 50, 29782985, doi:10.1109/TGRS.2011.2177666.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 2316–2326, doi:10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2; Corrigendum, 35, 268–270, doi:10.1175/JPO-2731.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, doi:10.1029/2007JC004277; Corrigendum, 114, C02015, doi:10.1029/2008JC005244.

  • Hwang, P. A., and F. Fois, 2015: Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res., 120, 36403657, doi:10.1002/2015JC010782.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., W. J. Teague, G. A. Jacobs, and D. W. Wang, 1998: A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res., 103, 10 45110 468, doi:10.1029/98JC00197.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., B. Zhang, J. V. Toporkov, and W. Perrie, 2010: Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res., 115, C08019, doi:10.1029/2009JC005995.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., H. García-Nava, and F. J. Ocampo-Torres, 2011: Observations of wind wave development in mixed seas and unsteady wind forcing. J. Phys. Oceanogr., 41, 23432362, doi:10.1175/JPO-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, 2013: Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J. Atmos. Oceanic Technol., 30, 21682188, doi:10.1175/JTECH-D-12-00239.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., A. Stoffelen, G.-J. van Zadelhoff, W. Perrie, B. Zhang, H. Li, and H. Shen, 2015: Cross polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. J. Geophys. Res., 120, 893909, doi:10.1002/2014JC010439.

    • Search Google Scholar
    • Export Citation
  • Lehner, S., J. Schulz-Stellenfleth, B. Schättler, H. Breit, and J. Horstmann, 2000: Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Trans. Geosci. Remote Sens., 38, 22462257, doi:10.1109/36.868882.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2009: Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 30653083, doi:10.1109/TGRS.2009.2027012.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., D. T. Thompson, R. C. Beal, W. G. Pichel, and P. Clemente-Colón, 2001: Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens., 39, 25872600, doi:10.1109/36.974994.

    • Search Google Scholar
    • Export Citation
  • Ocampo-Torres, F. J., H. García-Nava, R. Durazo, P. Osuna, G. M. Díaz Méndez, and H. C. Graber, 2011: The IntOA Experiment: A study of ocean-atmosphere interactions under moderate to strong offshore winds and opposing swell conditions, in the Gulf of Tehuantepec, Mexico. Bound.-Layer Meteor., 138, 433451, doi:10.1007/s10546-010-9561-5.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for full, developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, doi:10.1029/JZ069i024p05181.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 2009: The ocean wave height variance spectrum: Wavenumber peak versus frequency peak. J. Phys. Oceanogr., 39, 23822383, doi:10.1175/2009JPO4268.1.

    • Search Google Scholar
    • Export Citation
  • Rivas, M. B., A. Stoffelen, and G.-J. van Zadelhoff, 2014: The benefit of HH and VV polarizations in retrieving extreme wind speeds for an ASCAT-type scatterometer. IEEE Trans. Geosci. Remote Sens., 52, 42734280, doi:10.1109/TGRS.2013.2280876.

    • Search Google Scholar
    • Export Citation
  • Romeiser, R., H. C. Graber, M. J. Caruso, R. E. Jensen, D. T. Walker, and A. T. Cox, 2015: A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Trans. Geosci. Remote Sens., 53, 13201345, doi:10.1109/TGRS.2014.2337663.

    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, doi:10.1175/2009JPO4127.1.

    • Search Google Scholar
    • Export Citation
  • Schulz-Stellenfleth, J., T. K. König, and S. Lehner, 2007: An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res., 112, C03019, doi:10.1029/2006JC003970.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., and W. H. Munk, 1947: Wind, sea, and swell: Theory of relations for forecasting. U. S. Navy Hydrographic Office Tech. Rep. 1, 44 pp.

  • van Zadelhoff, G.-J., A. Stoffelen, P. W. Vachon, J. Wolfe, J. Horstmann, and M. Belmonte Rivas, 2014: Retrieving hurricane wind speeds using cross polarization C-band measurements. Atmos. Meas. Tech., 7, 437449, doi:10.5194/amt-7-437-2014.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., D. W. Hancock, D. E. Hines, R. N. Swift, and J. F. Scott, 1985: Directional wave spectra measured with the surface contour radar. J. Phys. Oceanogr., 15, 566592, doi:10.1175/1520-0485(1985)015<0566:DWSMWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., D. W. Hancock, D. E. Hines, R. N. Swift, and J. F. Scott, 1989: An observation of the directional wave spectrum evolution from shoreline to fully developed. J. Phys. Oceanogr., 19, 670690, doi:10.1175/1520-0485(1989)019<0670:AOOTDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, doi:10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1988: Parametric hurricane wave prediction model. J. Waterw. Port Coastal Ocean Eng., 114, 637652, doi:10.1061/(ASCE)0733-950X(1988)114:5(637).

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, doi:10.1016/S0029-8018(97)00011-5.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Struct., 16, 201218, doi:10.1016/S0951-8339(02)00054-0.

  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, doi:10.1029/2006JC003540.

  • Young, I. R., and G. Ph. van Vledder, 1993: A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. Roy. Soc. London, A342, 505524, doi:10.1098/rsta.1993.0030.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and J. Vinoth, 2013: An “extended fetch” model for the spatial distribution of tropical cyclone wind-waves as observed by altimeter. Ocean Eng., 70, 1424, doi:10.1016/j.oceaneng.2013.05.015.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., 2005: Theoretical interpretation of fetch limited wind-driven sea observations. Nonlinear Processes Geophys., 12, 10111020, doi:10.5194/npg-12-1011-2005.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., S. I. Badulin, P. A. Hwang, and G. Caulliez, 2015: Universality of sea wave growth and its physical roots. J. Fluid Mech., 780, 503535, doi:10.1017/jfm.2015.468.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., and W. Perrie, 2012: Cross-polarized synthetic aperture radar: A new potential technique for hurricanes. Bull. Amer. Meteor. Soc., 93, 531541, doi:10.1175/BAMS-D-11-00001.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., W. Perrie, P. Vachon, J. A. Zhang, E. W. Uhlhorn, and Y. He, 2014: High-resolution hurricane vector winds from C-band dual-polarization SAR observations. J. Atmos. Oceanic Technol., 31, 272286, doi:10.1175/JTECH-D-13-00006.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 7 7 7

Fetch- and Duration-Limited Nature of Surface Wave Growth inside Tropical Cyclones: With Applications to Air–Sea Exchange and Remote Sensing

View More View Less
  • 1 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
Restricted access

Abstract

The 2D wavenumber spectra collected by an airborne scanning radar altimeter in hurricane hunter missions are used to investigate the fetch- and duration-limited nature of wave growth inside hurricanes. Despite the much more complex wind-forcing conditions, the dimensionless growth curves obtained with the wind-wave triplets (reference wind velocity, significant wave height, and dominant wave period) inside hurricanes, except near the eye region, are comparable to the reference similarity counterparts constructed with the wind-wave triplets collected in field experiments conducted under ideal quasi-steady fetch-limited conditions. In dimensionless terms, the youngest waves are in the back quarter of the hurricane. In the Northern Hemisphere, the dimensionless frequency decreases systematically counterclockwise (CCW), and the most mature waves are in the left-hand sector. Except for those waves near the eye region, the dominant wave phase speeds are about 0.32 to 0.71 times of the local wind speed, and they are proper wind seas. Based on the computation of the wind input or energy dissipation in the wave field, a conservative estimate of the air–sea energy exchange over the coverage area of a category one hurricane is about 5 TW. Formulas for the effective fetches and durations in the three hurricane sectors are derived from the data. Using these formulas together with the wave growth functions, the full set of wind-wave triplets can be calculated knowing only one of the three. These results may enhance the capability and scope of monitoring hurricanes from space.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil

U.S. Naval Research Laboratory Publication Number JA/7260—15-0158.

Abstract

The 2D wavenumber spectra collected by an airborne scanning radar altimeter in hurricane hunter missions are used to investigate the fetch- and duration-limited nature of wave growth inside hurricanes. Despite the much more complex wind-forcing conditions, the dimensionless growth curves obtained with the wind-wave triplets (reference wind velocity, significant wave height, and dominant wave period) inside hurricanes, except near the eye region, are comparable to the reference similarity counterparts constructed with the wind-wave triplets collected in field experiments conducted under ideal quasi-steady fetch-limited conditions. In dimensionless terms, the youngest waves are in the back quarter of the hurricane. In the Northern Hemisphere, the dimensionless frequency decreases systematically counterclockwise (CCW), and the most mature waves are in the left-hand sector. Except for those waves near the eye region, the dominant wave phase speeds are about 0.32 to 0.71 times of the local wind speed, and they are proper wind seas. Based on the computation of the wind input or energy dissipation in the wave field, a conservative estimate of the air–sea energy exchange over the coverage area of a category one hurricane is about 5 TW. Formulas for the effective fetches and durations in the three hurricane sectors are derived from the data. Using these formulas together with the wave growth functions, the full set of wind-wave triplets can be calculated knowing only one of the three. These results may enhance the capability and scope of monitoring hurricanes from space.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil

U.S. Naval Research Laboratory Publication Number JA/7260—15-0158.

Save