Enhanced Turbulence Associated with the Diurnal Jet in the Ocean Surface Boundary Layer

Graig Sutherland Department of Mathematics, University of Oslo, Oslo, Norway
School of Physics, and the Ryan Institute, National University of Ireland, Galway, Ireland

Search for other papers by Graig Sutherland in
Current site
Google Scholar
PubMed
Close
,
Louis Marié Laboratoire de Physique des Océans, CNRS/IFREMER/IRD/UBO, Plouzané, France

Search for other papers by Louis Marié in
Current site
Google Scholar
PubMed
Close
,
Gilles Reverdin LOCEAN Laboratory, Sorbonne Universités (UPMC, University of Paris 6)-CNRS-IRD-MNHN, Paris, France

Search for other papers by Gilles Reverdin in
Current site
Google Scholar
PubMed
Close
,
Kai H. Christensen Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Kai H. Christensen in
Current site
Google Scholar
PubMed
Close
,
Göran Broström Department of Marine Sciences, University of Göteburg, Göteborg, Sweden

Search for other papers by Göran Broström in
Current site
Google Scholar
PubMed
Close
, and
Brian Ward School of Physics, and the Ryan Institute, National University of Ireland, Galway, Ireland

Search for other papers by Brian Ward in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Detailed observations of the diurnal jet, a surface intensification of the wind-driven current associated with the diurnal cycle of sea surface temperature (SST), were obtained during August and September 2012 in the subtropical Atlantic. A diurnal increase in SST of 0.2° to 0.5°C was observed, which corresponded to a diurnal jet of 0.15 m s−1. The increase in near-surface stratification limits the vertical diffusion of the wind stress, which in turn increases the near-surface shear. While the stratification decreased the turbulent dissipation rate ε below the depth of the diurnal jet, there was an observed increase in ε within the diurnal jet. The diurnal jet was observed to increase the near-surface shear by a factor of 5, which coincided with enhanced values of ε. The diurnal evolution of the Richardson number, which is an indicator of shear instability, is less than 1, suggesting that shear instability may contribute to near-surface turbulence. While the increased stratification due to the diurnal heating limits the depth of the momentum flux due to the wind, shear instability provides an additional source of turbulence that interacts with the enhanced shear of the diurnal jet to increase ε within this shallow layer.

Corresponding author address: Graig Sutherland, Department of Mathematics, University of Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway. E-mail: graigors@math.uio.no

Abstract

Detailed observations of the diurnal jet, a surface intensification of the wind-driven current associated with the diurnal cycle of sea surface temperature (SST), were obtained during August and September 2012 in the subtropical Atlantic. A diurnal increase in SST of 0.2° to 0.5°C was observed, which corresponded to a diurnal jet of 0.15 m s−1. The increase in near-surface stratification limits the vertical diffusion of the wind stress, which in turn increases the near-surface shear. While the stratification decreased the turbulent dissipation rate ε below the depth of the diurnal jet, there was an observed increase in ε within the diurnal jet. The diurnal jet was observed to increase the near-surface shear by a factor of 5, which coincided with enhanced values of ε. The diurnal evolution of the Richardson number, which is an indicator of shear instability, is less than 1, suggesting that shear instability may contribute to near-surface turbulence. While the increased stratification due to the diurnal heating limits the depth of the momentum flux due to the wind, shear instability provides an additional source of turbulence that interacts with the enhanced shear of the diurnal jet to increase ε within this shallow layer.

Corresponding author address: Graig Sutherland, Department of Mathematics, University of Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway. E-mail: graigors@math.uio.no
Save
  • Asher, W. E., A. T. Jessup, and D. Clark, 2014: Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE. J. Geophys. Res. Oceans, 119, 32193233, doi:10.1002/2014JC009808.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., S. Woolnough, J. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202, doi:10.1175/JCLI3319.1.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K., and M. Gregg, 1993: Diurnal restratification and turbulence in the oceanic surface mixed layer: 1. Observations. J. Geophys. Res., 98, 22 64522 656, doi:10.1029/93JC02297.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K., and M. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res., 42, 15211543, doi:10.1016/0967-0637(95)00068-H.

    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., R. C. Lien, J. N. Moum, and M. C. Gregg, 1997: Turbulence decay and restratification in the equatorial ocean surface layer following nighttime convection. J. Phys. Oceanogr., 27, 11201132, doi:10.1175/1520-0485(1997)027<1120:TDARIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., B. Ward, and J. Vialard, 2014: Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep-Sea Res. I, 94, 107123, doi:10.1016/j.dsr.2014.08.009.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, doi:10.1175/JCLI-D-12-00062.1.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modelling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39, 12001215, doi:10.1175/2008JPO4064.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, doi:10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, doi:10.1146/annurev-marine-010213-135138.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Drushka, K., S. T. Gille, and J. Sprintall, 2014: The diurnal salinity cycle in the tropics. J. Geophys. Res. Oceans, 119, 58745890, doi:10.1002/2014JC009924.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and C. E. Grosch, 2014: Turbulence process domination under the combined forcings of wind stress, the Langmuir vortex force, and surface cooling. J. Phys. Oceanogr., 44, 4467, doi:10.1175/JPO-D-13-021.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Jähne, B., and H. Haußecker, 1998: Air-water gas exchange. Annu. Rev. Fluid Mech., 30, 443468, doi:10.1146/annurev.fluid.30.1.443.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal method for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821, doi:10.1029/2000JC900072.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, doi:10.1007/s10872-007-0063-0.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, doi:10.1029/JC074i028p06991.

  • Khoo, B., and A. Sonin, 1992: Augmented gas exchange across wind-sheared and shear-free air-water interfaces. J. Geophys. Res., 97, 14 41314 415, doi:10.1029/92JC01293.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and A. V. Soloviev, 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20, 617628, doi:10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamont, J. C., and D. Scott, 1970: An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J., 16, 513519, doi:10.1002/aic.690160403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lombardo, C. P., and M. C. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94, 62736284, doi:10.1029/JC094iC05p06273.

    • Search Google Scholar
    • Export Citation
  • McGillis, W. R., and Coauthors, 2004: Air-sea CO2 exchange in the equatorial Pacific. J. Geophys. Res., 109, C08S02, doi:10.1029/2003JC002256.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • Miles, J., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Nicholson, D. P., S. T. Wilson, S. C. Doney, and D. M. Karl, 2015: Quantifying subtropical North Pacific Gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett., 42, 40324039, doi:10.1002/2015GL063065.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1974: Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109115, doi:10.1175/1520-0485(1974)004<0109:VPOVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., and R. A. Weller, 1999: Structure and evolution of the oceanic surface boundary layer during the surface waves processes program. J. Mar. Syst., 21, 85102, doi:10.1016/S0924-7963(99)00007-X.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, and E. A. Terray, 2006: Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. J. Geophys. Res., 111, C03016, doi:10.1029/2005JC003004.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., and Coauthors, 2015: Surface salinity in the North Atlantic Subtropical Gyre: During the STRASSE/SPURS summer 2012 cruise. Oceanography, 28, 114123, doi:10.5670/oceanog.2015.09.

    • Search Google Scholar
    • Export Citation
  • Shay, T. J., and M. C. Gregg, 1986: Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 17771798, doi:10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., P. O. Zavialov, and J. N. Moum, 1997: Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810822, doi:10.1175/1520-0485(1997)027<0810:DOTITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. Moum, L. Li, and S. Thorpe, 2013: Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr., 43, 24322455, doi:10.1175/JPO-D-13-089.1.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and R. Lukas, 2014: The Near-Surface Layer of the Ocean. 2nd ed. Springer, 552 pp.

  • Stevens, C., B. Ward, C. Law, and M. Walkington, 2011: Surface layer mixing during the SAGE ocean fertilization experiment. Deep-Sea Res. II, 58, 776785, doi:10.1016/j.dsr2.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., K. Saunders, W. Simmons, and J. Cooper, 1969: Observations of the diurnal thermocline. Deep-Sea Res., 16, 269284.

  • Sutherland, G., B. Ward, and K. H. Christensen, 2013: Wave-turbulence scaling in the ocean mixed layer. Ocean Sci., 9, 597608, doi:10.5194/os-9-597-2013.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., K. H. Christensen, and B. Ward, 2014a: Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. J. Geophys. Res. Oceans, 119, 18991910, doi:10.1002/2013JC009537.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., G. Reverdin, L. Marié, and B. Ward, 2014b: Mixed and mixing layer depths in the ocean surface boundary layer. Geophys. Res. Lett., 41, 84698476, doi:10.1002/2014GL061939.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, doi:10.1016/j.dsr2.2008.12.009.

    • Search Google Scholar
    • Export Citation
  • Wain, D. J., J. M. Lilly, A. H. Callaghan, I. Yashayaev, and B. Ward, 2015: A breaking internal wave in the surface ocean boundary layer. J. Geophys. Res. Oceans, 120, 41514161, doi:10.1002/2014JC010416.

    • Search Google Scholar
    • Export Citation
  • Ward, B., 2006: Near-surface ocean temperature. J. Geophys. Res., 111, C02005, doi:10.1029/2004JC002689.

  • Ward, B., R. Wanninkhof, W. R. McGillis, A. T. Jessup, M. D. DeGrandpre, J. E. Hare, and J. B. Edson, 2004: Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients. J. Geophys. Res., 109, C08S08, doi:10.1029/2003JC001800.

    • Search Google Scholar
    • Export Citation
  • Ward, B., T. Fristedt, A. H. Callaghan, G. Sutherland, X. Sanchez, J. Vialard, and A. ten Doeschate, 2014: The Air–Sea Interaction Profiler (ASIP): An autonomous upwardly rising profiler for microstructure measurements in the upper ocean. J. Atmos. Oceanic Technol., 31, 22462267, doi:10.1175/JTECH-D-14-00010.1.

    • Search Google Scholar
    • Export Citation
  • Webb, A., and B. Fox-Kemper, 2011: Wave spectral moments and Stokes drift estimation. Ocean Modell., 40, 273288, doi:10.1016/j.ocemod.2011.08.007.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and A. J. Plueddemann, 1996: Observations of the vertical structure of the oceanic boundary layer. J. Geophys. Res., 101, 87898806, doi:10.1029/96JC00206.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., S. Majumder, and A. Tandon, 2014: Diurnal restratification events in the southeast Pacific trade wind regime. J. Phys. Oceanogr., 44, 25692587, doi:10.1175/JPO-D-14-0026.1.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1968: Wave induced shear instabilities in the summer thermocline. J. Fluid Mech., 32, 791800, doi:10.1017/S0022112068001035.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., and V. Strass, 1986: The response of the upper ocean to solar heating. II: The wind-driven current. Quart. J. Roy. Meteor. Soc., 112, 2942, doi:10.1002/qj.49711247103.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., W. R. McGillis, P. A. Raymond, J. B. Edson, E. J. Hintsa, H. J. Zemmelink, J. W. H. Dacey, and D. T. Ho, 2007: Environmental turbulent mixing controls of air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett., 34, L10601, doi:10.1029/2006GL028790.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1933 869 38
PDF Downloads 723 153 17