Climatological Annual Cycle of the Salinity Budgets of the Subtropical Maxima

Benjamin K. Johnson Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Benjamin K. Johnson in
Current site
Google Scholar
PubMed
Close
,
Frank O. Bryan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Frank O. Bryan in
Current site
Google Scholar
PubMed
Close
,
Semyon A. Grodsky Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Semyon A. Grodsky in
Current site
Google Scholar
PubMed
Close
, and
James A. Carton Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by James A. Carton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Six subtropical salinity maxima (Smax) exist: two each in the Pacific, Atlantic, and Indian Ocean basins. The north Indian (NI) Smax lies in the Arabian Sea while the remaining five lie in the open ocean. The annual cycle of evaporation minus precipitation (EP) flux over the Smax is asymmetric about the equator. Over the Northern Hemisphere Smax, the semiannual harmonic is dominant (peaking in local summer and winter), while over the Southern Hemisphere Smax, the annual harmonic is dominant (peaking in local winter). Regardless, the surface layer salinity for all six Smax reaches a maximum in local fall and minimum in local spring. This study uses a multidecade integration of an eddy-resolving ocean circulation model to compute salinity budgets for each of the six Smax. The NI Smax budget is dominated by eddy advection related to the evolution of the seasonal monsoon. The five open-ocean Smax budgets reveal a common annual cycle of vertical diffusive fluxes that peak in winter. These Smax have regions on their eastward and poleward edges in which the vertical salinity gradient is destabilizing. These destabilizing gradients, in conjunction with wintertime surface cooling, generate a gradually deepening wintertime mixed layer. The vertical salinity gradient sharpens at the base of the mixed layer, making the water column susceptible to salt finger convection and enhancing vertical diffusive salinity fluxes out of the Smax into the ocean interior. This process is also observed in Argo float profiles and is related to the formation regions of subtropical mode waters.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Benjamin Johnson, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 3424 Computer and Space Science Bldg., College Park, MD 20742. E-mail: bjohnson@atmos.umd.edu

Abstract

Six subtropical salinity maxima (Smax) exist: two each in the Pacific, Atlantic, and Indian Ocean basins. The north Indian (NI) Smax lies in the Arabian Sea while the remaining five lie in the open ocean. The annual cycle of evaporation minus precipitation (EP) flux over the Smax is asymmetric about the equator. Over the Northern Hemisphere Smax, the semiannual harmonic is dominant (peaking in local summer and winter), while over the Southern Hemisphere Smax, the annual harmonic is dominant (peaking in local winter). Regardless, the surface layer salinity for all six Smax reaches a maximum in local fall and minimum in local spring. This study uses a multidecade integration of an eddy-resolving ocean circulation model to compute salinity budgets for each of the six Smax. The NI Smax budget is dominated by eddy advection related to the evolution of the seasonal monsoon. The five open-ocean Smax budgets reveal a common annual cycle of vertical diffusive fluxes that peak in winter. These Smax have regions on their eastward and poleward edges in which the vertical salinity gradient is destabilizing. These destabilizing gradients, in conjunction with wintertime surface cooling, generate a gradually deepening wintertime mixed layer. The vertical salinity gradient sharpens at the base of the mixed layer, making the water column susceptible to salt finger convection and enhancing vertical diffusive salinity fluxes out of the Smax into the ocean interior. This process is also observed in Argo float profiles and is related to the formation regions of subtropical mode waters.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Benjamin Johnson, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 3424 Computer and Space Science Bldg., College Park, MD 20742. E-mail: bjohnson@atmos.umd.edu
Save
  • Bailey, D., M. Holland, E. Hunke, B. Lipscomb, B. Briegleb, C. Bitz, and J. Schramm, 2009: Community Ice CodE (CICE) user’s guide version 4.0. NCAR Doc., 22 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cice/ice_usrdoc.pdf.]

  • Bingham, F. M., G. R. Foltz, and M. J. McPhaden, 2012: Characteristics of the seasonal cycle of surface layer salinity in the global ocean. Ocean Sci., 8, 915929, doi:10.5194/os-8-915-2012.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., and S. Bachman, 2015: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, doi:10.1175/JPO-D-14-0172.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and Coauthors, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2012: Yellowstone: IBM iDataPlex System (Climate Simulation Laboratory). National Center for Atmospheric Research, accessed 17 August 2016. [Available online at http://n2t.net/ark:/85065/d7wd3xhc.]

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and T. P. Boyer, 2013: Long-term salinity challenges and implications for the global water cycle. Ocean Circulation and Climate, G. Siedler et al., Eds., Academic Press, 727–758.

  • Gordon, A. L., and C. F. Giulivi, 2014: Ocean eddy freshwater flux convergence into the North Atlantic subtropics. J. Geophys. Res. Oceans, 119, 33273335, doi:10.1002/2013JC009596.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., C. F. Giulivi, J. Busecke, and F. M. Bingham, 2015: Differences among subtropical surface salinity patterns. Oceanography, 28, 3239, doi:10.5670/oceanog.2015.02.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE Global Hydrographic Climatology. BSH Tech. Rep. 35, Bundesamtes für Seeschifffahrt und Hydrographie, 52 pp. [Available online at www.bsh.de/de/Produkte/Buecher/Berichte_/Bericht35/Bericht1.pdf.]

  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Gu, D. F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, doi:10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler et al., Eds., Academic Press, 373–386.

  • Hautala, S. L., and D. H. Roemmich, 1998: Subtropical mode water in the Northeast Pacific Basin. J. Geophys. Res., 103, 13 05513 066, doi:10.1029/98JC01015.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2006: Generation and initial evolution of a mode water θS anomaly. J. Phys. Oceanogr., 36, 739751, doi:10.1175/JPO2895.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. R. Luyten, A. Kubryakov, F. B. Bahr, and J. S. Pallant, 1998: Meso- to large-scale structure of subducting water in the subtropical gyre of the eastern North Atlantic Ocean. J. Phys. Oceanogr., 28, 4061, doi:10.1175/1520-0485(1998)028<0040:MTLSSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kallberg, P., P. Berrisford, B. Hoskins, A. Simmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 Atlas. ECMWF Tech. Rep. 19, 191 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Käse, R. H., W. Zenk, T. B. Sanford, and W. Hiller, 1985: Currents, fronts and eddy fluxes in the Canary Basin. Prog. Oceanogr., 14, 231257, doi:10.1016/0079-6611(85)90013-8.

    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., and F. Gaillard, 2013: Variability of the heat and salt budget in the subtropical southeastern Pacific mixed layer between 2004 and 2010: Spice injection mechanism. J. Phys. Oceanogr., 43, 18801898, doi:10.1175/JPO-D-13-04.1.

    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., G. Reverdin, and A. Lazar, 2015: Interannual variability of the mixed layer winter convection and spice injection in the eastern subtropical North Atlantic. J. Phys. Oceanogr., 45, 504525, doi:10.1175/JPO-D-14-0042.1.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and L. Thompson, 2000: Formation mechanisms for North Pacific central and eastern subtropical mode waters. J. Phys. Oceanogr., 30, 868887, doi:10.1175/1520-0485(2000)030<0868:FMFNPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parametrization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lindstrom, E., F. Bryan, and R. Schmitt, 2015: SPURS: Salinity Processes in the Upper-ocean Regional Study—The North Atlantic Experiment Introduction. Oceanography, 28, 1419, doi:10.5670/oceanog.2015.01.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, doi:10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Oceanic Technol., 20, 730741, doi:10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monterey, G., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 102 pp. [Available online at ftp://ftp.nodc.noaa.gov/pub/data.nodc/woa/PUBLICATIONS/Atlas14.pdf.]

  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, doi:10.1006/jcph.1996.0136.

    • Search Google Scholar
    • Export Citation
  • O’Connor, B. M., R. A. Fine, K. A. Maillet, and D. B. Olson, 2002: Formation rates of subtropical underwater in the Pacific Ocean. Deep-Sea Res. I, 49, 15711590, doi:10.1016/S0967-0637(02)00087-0.

    • Search Google Scholar
    • Export Citation
  • Oka, E., and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, doi:10.1007/s10872-011-0032-5.

    • Search Google Scholar
    • Export Citation
  • Provost, C., C. Escoffier, K. Maamaatuaiahutapu, A. Kartavtseff, and V. Garcon, 1999: Subtropical mode waters in the South Atlantic Ocean. J. Geophys. Res., 104, 21 03321 049, doi:10.1029/1999JC900049.

    • Search Google Scholar
    • Export Citation
  • Qu, T. D., S. Gao, and I. Fukumori, 2011: What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett., 38, L07602, doi:10.1029/2011GL046757.

    • Search Google Scholar
    • Export Citation
  • Rao, R. R., and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res., 108, 3009, doi:10.1029/2001JC000907.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., E. Kestenare, C. Frankignoul, and T. Delcroix, 2007: Surface salinity in the Atlantic Ocean (30°S–50°N). Prog. Oceanogr., 73, 311340, doi:10.1016/j.pocean.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, doi:10.5670/oceanog.2009.36.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, doi:10.1002/jgrc.20122.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1981: Form of the temperature-salinity relationship in the central water: Evidence for double-diffusive mixing. J. Phys. Oceanogr., 11, 10151026, doi:10.1175/1520-0485(1981)011<1015:FOTTSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., A. Kuhl, and W. Zenk, 1987: The Madiera Mode Water. J. Phys. Oceanogr., 17, 15611570, doi:10.1175/1520-0485(1987)017<1561:TMMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Rep. LAUR-10-01853, 141 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.]

  • Snowden, D. P., and R. L. Molinari, 2003: Subtropical cells in the Atlantic ocean: An observational summary. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 287312, doi:10.1016/S0422-9894(03)80151-4.

  • Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979–91 and comparisons to other climatologies. J. Climate, 6, 13011326, doi:10.1175/1520-0442(1993)006<1301:GOPFTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1993: On the formation of central water and thermocline ventilation in the Southern Hemisphere. Deep-Sea Res. I, 40, 827848, doi:10.1016/0967-0637(93)90074-D.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, doi:10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1960: The salt-fountain and thermohaline convection. Tellus, 12A, 172175, doi:10.1111/j.2153-3490.1960.tb01295.x.

  • Sugimoto, S., and K. Hanawa, 2007: Further evidence for non-reemergence of winter SST anomalies in the North Pacific eastern subtropical mode water area. J. Oceanogr., 63, 625635, doi:10.1007/s10872-007-0055-0.

    • Search Google Scholar
    • Export Citation
  • Toyama, K., and T. Suga, 2010: Vertical structure of North Pacific mode waters. Deep-Sea Res. II, 57, 11521160, doi:10.1016/j.dsr2.2009.12.004.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., and L. D. Talley, 1996: Water-property distributions along an eastern Pacific hydrographic section at 135W. J. Mar. Res., 54, 541564, doi:10.1357/0022240963213583.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., A. S. Fischer, D. L. Rudnick, C. C. Eriksen, T. D. Dickey, J. Marra, C. Fox, and R. Leben, 2002: Moored observations of upper-ocean response to the monsoons in the Arabian Sea during 1994–1995. Deep-Sea Res. II, 49, 21952230, doi:10.1016/S0967-0645(02)00035-8.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., and G. C. Johnson, 2003: South Pacific Eastern Subtropical Mode Water. J. Phys. Oceanogr., 33, 14931509, doi:10.1175/1520-0485(2003)033<1493:SPESMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1959: The 18° water in the Sargasso Sea. Deep-Sea Res., 5, 297305, doi:10.1016/0146-6313(58)90026-1.

  • Wüst, G., 1935: The Stratosphere of the Atlantic Ocean: Scientific Results of the German Atlantic Expedition of the Research Vessel “Meteor” 1925–1927. Amervid, 112 pp.

  • Xie, P. P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858, doi:10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34, 15281547, doi:10.1175/1520-0485(2004)034<1528:LGOSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, doi:10.1029/2010JC006937.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1363 826 54
PDF Downloads 404 63 6