Calving Signature in Ocean Waves at Helheim Glacier and Sermilik Fjord, East Greenland

Irena Vaňková Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Irena Vaňková in
Current site
Google Scholar
PubMed
Close
and
David M. Holland Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by David M. Holland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

When glaciers calve icebergs, a fraction of the released potential energy is radiated away via gravity waves. The characteristics of such waves, caused by iceberg calving on Helheim Glacier in east Greenland, are investigated. Observations were collected from an array of five high-frequency bottom pressure meters placed along Sermilik Fjord. Calving-generated tsunami waves were identified and used to construct a calving event catalog. Calving events are observed to cluster around high and low semidiurnal tides and around high and prior-to-low semimonthly tides. In the postcalving ocean state, discrete spectral peaks associated with calving events are observed, and they are consistent among all the events. A numerical model is used to compute the resonant modes of the fjord and to simulate calving-generated ocean waves. Damped oscillator boundary forcing with 5- to 10-min periods is found to reproduce well the observed properties of calving waves. These observations and modeling are relevant for better understanding of wave dynamics in glacier fjords.

Denotes Open Access content.

Corresponding author address: Irena Vaňková, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185. E-mail: vankova@cims.nyu.edu

Abstract

When glaciers calve icebergs, a fraction of the released potential energy is radiated away via gravity waves. The characteristics of such waves, caused by iceberg calving on Helheim Glacier in east Greenland, are investigated. Observations were collected from an array of five high-frequency bottom pressure meters placed along Sermilik Fjord. Calving-generated tsunami waves were identified and used to construct a calving event catalog. Calving events are observed to cluster around high and low semidiurnal tides and around high and prior-to-low semimonthly tides. In the postcalving ocean state, discrete spectral peaks associated with calving events are observed, and they are consistent among all the events. A numerical model is used to compute the resonant modes of the fjord and to simulate calving-generated ocean waves. Damped oscillator boundary forcing with 5- to 10-min periods is found to reproduce well the observed properties of calving waves. These observations and modeling are relevant for better understanding of wave dynamics in glacier fjords.

Denotes Open Access content.

Corresponding author address: Irena Vaňková, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185. E-mail: vankova@cims.nyu.edu
Save
  • Amundson, J. M., M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka, 2010: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115, F01005, doi:10.1029/2009JF001405.

    • Search Google Scholar
    • Export Citation
  • Amundson, J. M., J. F. Clinton, M. Fahnestock, M. Truffer, M. P. Lüthi, and R. J. Motyka, 2012: Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbrae, Greenland. Ann. Glaciol., 53, 7984, doi:10.3189/2012/AoG60A200.

    • Search Google Scholar
    • Export Citation
  • Bellotti, G., R. Briganti, G. M. Beltrami, and L. Franco, 2012: Modal analysis of semi-enclosed basins. Coastal Eng., 64, 1625, doi:10.1016/j.coastaleng.2012.02.002.

    • Search Google Scholar
    • Export Citation
  • Benn, D. I., C. R. Warren, and R. H. Mottram, 2007: Calving processes and the dynamics of calving glaciers. Earth Sci. Rev., 82, 143179, doi:10.1016/j.earscirev.2007.02.002.

    • Search Google Scholar
    • Export Citation
  • Burton, J. C., and Coauthors, 2012: Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res., 117, F01007, doi:10.1029/2011JF002055.

    • Search Google Scholar
    • Export Citation
  • Cassotto, R., M. Fahnestock, J. M. Amundson, M. Truffer, and I. Joughin, 2015: Seasonal and interannual variations in ice mélange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J. Glaciol., 61, 7688, doi:10.3189/2015JoG13J235.

    • Search Google Scholar
    • Export Citation
  • Cook, S., I. C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T. D. James, 2014: Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere, 8, 827841, doi:10.5194/tc-8-827-2014.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., M.-J. Yang, D. N. Slinn, and R. G. Brown, 1993: Toward more accurate wave-permeable boundary conditions. Mon. Wea. Rev., 121, 604620, doi:10.1175/1520-0493(1993)121<0604:TMAWPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foga, S., L. A. Stearns, and C. van der Veen, 2014: Application of satellite remote sensing techniques to quantify terminus and ice mélange behavior at Helheim Glacier, east Greenland. Mar. Technol. Soc. J., 48, 8191, doi:10.4031/MTSJ.48.5.3.

    • Search Google Scholar
    • Export Citation
  • Hammer, C., M. Ohrnberger, and V. Schlindwein, 2015: Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica. Geophys. Res. Lett., 42, 39363943, doi:10.1002/2015GL064029.

    • Search Google Scholar
    • Export Citation
  • Herried, B., C. Porter, P. Morin, and I. Howat, 2013: The RISCO RapidIce Viewer: An application for monitoring the polar ice sheets with multi-resolution, multi-temporal, multi-sensor satellite imagery. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract IN34A-02.

  • Howat, I. M., J. E. Box, Y. Ahn, A. Herrington, and E. M. McFadden, 2010: Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56, 601613, doi:10.3189/002214310793146232.

    • Search Google Scholar
    • Export Citation
  • James, T. D., T. Murray, N. Selmes, K. Scharrer, and M. O’Leary, 2014: Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nat. Geosci., 7, 593596, doi:10.1038/ngeo2204.

    • Search Google Scholar
    • Export Citation
  • Krug, J., G. Durand, O. Gagliardini, and J. Weiss, 2015: Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics. Cryosphere, 9, 9891003, doi:10.5194/tc-9-989-2015.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., E. A. Okal, R. C. Aster, and J. N. Bassis, 2009: Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves. J. Glaciol., 55, 193206, doi:10.3189/002214309788608679.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., D. S. Abbot, and O. V. Sergienko, 2011: Iceberg-capsize tsunamigenesis. Ann. Glaciol., 52, 5156, doi:10.3189/172756411797252103.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., J. Freed-Brown, W. W. Zhang, and J. M. Amundson, 2012: The influence of ice mélange on fjord seiches. Ann. Glaciol., 53, 4549, doi:10.3189/2012/AoG60A027.

    • Search Google Scholar
    • Export Citation
  • Marchenko, A. V., E. G. Morozov, and S. V. Muzylev, 2012: A tsunami wave recorded near a glacier front. Nat. Hazards Earth Syst. Sci., 12, 415419, doi:10.5194/nhess-12-415-2012.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Massel, S. R., and A. Przyborska, 2013: Surface wave generation due to glacier calving. Oceanologia, 55, 101127, doi:10.5697/oc.55-1.101.

    • Search Google Scholar
    • Export Citation
  • Murray, T., and Coauthors, 2015: Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf., 120, 964982, doi:10.1002/2015JF003531.

    • Search Google Scholar
    • Export Citation
  • Nettles, M., and G. Ekström, 2010: Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci., 38, 467491, doi:10.1146/annurev-earth-040809-152414.

    • Search Google Scholar
    • Export Citation
  • Nettles, M., and Coauthors, 2008: Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35, L24503, doi:10.1029/2008GL036127.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, doi:10.1016/S0098-3004(02)00013-4.

    • Search Google Scholar
    • Export Citation
  • Rabinovich, A. B., 2009: Seiches and harbor oscillations. Handbook of Coastal and Ocean Engineering, Young C. Kim, Ed., World Scientific, 193–236, doi:10.1142/9789812819307_0009.

  • Sammartino, S., J. C. S. Garrido, J. Delgado, C. Naranjo, F. C. Aldeanueva, and J. G. Lafuente, 2014: Experimental and numerical characterization of harbor oscillations in the port of Málaga, Spain. Ocean Eng., 88, 110119, doi:10.1016/j.oceaneng.2014.06.011.

    • Search Google Scholar
    • Export Citation
  • Schjøth, F., C. S. Andresenb, F. Straneo, T. Murray, K. Scharrer, and A. Korablev, 2012: Campaign to map the bathymetry of a major Greenland fjord. Eos, Trans. Amer. Geophys. Union, 93, 141142, doi:10.1029/2012EO140001.

    • Search Google Scholar
    • Export Citation
  • Seale, A., P. Christoffersen, R. I. Mugford, and M. O’Leary, 2011: Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res., 116, F03013, doi:10.1029/2010JF001847.

    • Search Google Scholar
    • Export Citation
  • Squire, V. A., J. P. Dugan, P. Wadhams, P. J. Rottier, and A. K. Liu, 1995: Of ocean waves and sea ice. Annu. Rev. Fluid Mech., 27, 115168, doi:10.1146/annurev.fl.27.010195.000555.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nat. Geosci., 3, 182186, doi:10.1038/ngeo764.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., F. Straneo, G. B. Stenson, F. J. Davidson, M. O. Hammill, and A. Rosing-Asvid, 2013: Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry. J. Geophys. Res. Oceans, 118, 847855, doi:10.1029/2012JC008354.

    • Search Google Scholar
    • Export Citation
  • Walter, F., M. Olivieri, and J. F. Clinton, 2013: Calving event detection by observation of seiche effects on the Greenland fjords. J. Glaciol., 59, 162178, doi:10.3189/2013JoG12J118.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1360 592 53
PDF Downloads 355 62 7