Annual and Semiannual Cycle of Equatorial Atlantic Circulation Associated with Basin-Mode Resonance

Peter Brandt GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Search for other papers by Peter Brandt in
Current site
Google Scholar
PubMed
Close
,
Martin Claus GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany

Search for other papers by Martin Claus in
Current site
Google Scholar
PubMed
Close
,
Richard J. Greatbatch GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Search for other papers by Richard J. Greatbatch in
Current site
Google Scholar
PubMed
Close
,
Robert Kopte GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany

Search for other papers by Robert Kopte in
Current site
Google Scholar
PubMed
Close
,
John M. Toole Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by John M. Toole in
Current site
Google Scholar
PubMed
Close
,
William E. Johns Rosenstiel School of Marine and Atmospheric Science/Meteorology and Physical Oceanography, University of Miami, Miami, Florida

Search for other papers by William E. Johns in
Current site
Google Scholar
PubMed
Close
, and
Claus W. Böning GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Search for other papers by Claus W. Böning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.

Denotes Open Access content.

Corresponding author address: Peter Brandt, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. E-mail: pbrandt@geomar.de

Abstract

Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.

Denotes Open Access content.

Corresponding author address: Peter Brandt, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. E-mail: pbrandt@geomar.de
Save
  • Ascani, F., E. Firing, J. P. McCreary, P. Brandt, and R. J. Greatbatch, 2015: The deep equatorial ocean circulation in wind-forced numerical solutions. J. Phys. Oceanogr., 45, 17091734, doi:10.1175/JPO-D-14-0171.1.

    • Search Google Scholar
    • Export Citation
  • Athie, G., and F. Marin, 2008: Cross-equatorial structure and temporal modulation of intraseasonal variability at the surface of the tropical Atlantic Ocean. J. Geophys. Res., 113, C08020, doi:10.1029/2007JC004332.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1980: Equatorial solitary waves. Part I: Rossby solitons. J. Phys. Oceanogr., 10, 16991717, doi:10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., and C. Eden, 2005: Annual cycle and interannual variability of the mid-depth tropical Atlantic Ocean. Deep-Sea Res. I, 52, 199219, doi:10.1016/j.dsr.2004.03.011.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., F. A. Schott, C. Provost, A. Kartavtseff, V. Hormann, B. Bourles, and J. Fischer, 2006: Circulation in the central equatorial Atlantic: Mean and intraseasonal to seasonal variability. Geophys. Res. Lett., 33, L07609, doi:10.1029/2005GL025498.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Funk, V. Hormann, M. Dengler, R. J. Greatbatch, and J. M. Toole, 2011: Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean. Nature, 473, 497500, doi:10.1038/nature10013.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., and Coauthors, 2012: Ventilation of the equatorial Atlantic by the equatorial deep jets. J. Geophys. Res., 117, C12015, doi:10.1029/2012JC008118.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Funk, A. Tantet, W. Johns, and J. Fischer, 2014: The Equatorial Undercurrent in the central Atlantic and its relation to tropical Atlantic variability. Climate Dyn., 43, 29852997, doi:10.1007/s00382-014-2061-4.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and D. W. Moore, 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11, 15781584, doi:10.1175/1520-0485(1981)011<1578:ANOLFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and P. R. Gent, 1984: Reflection of low-frequency equatorial waves at arbitrary western boundaries. J. Mar. Res., 42, 487502, doi:10.1357/002224084788505988.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1960: Non-linear theory of a wind-driven homogeneous layer near the equator. Deep-Sea Res., 6, 303310, doi:10.1016/0146-6313(59)90089-9.

    • Search Google Scholar
    • Export Citation
  • Claus, M., R. J. Greatbatch, and P. Brandt, 2014: Influence of the barotropic mean flow on the width and the structure of the Atlantic equatorial deep jets. J. Phys. Oceanogr., 44, 24852497, doi:10.1175/JPO-D-14-0056.1.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., and E. Blayo, 2008: Two-way embedding algorithms: A review. Ocean Dyn., 58, 415428, doi:10.1007/s10236-008-0150-9.

  • Ding, H., N. S. Keenlyside, and M. Latif, 2009: Seasonal cycle in the upper equatorial Atlantic Ocean. J. Geophys. Res., 114, C09016, doi:10.1029/2009JC005418.

    • Search Google Scholar
    • Export Citation
  • Duteil, O., F. U. Schwarzkopf, C. W. Böning, and A. Oschlies, 2014: Major role of the equatorial current system in setting oxygen levels in the eastern tropical Atlantic Ocean: A high-resolution model study. Geophys. Res. Lett., 41, 20332040, doi:10.1002/2013GL058888.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., 2007: Intraseasonal variability of the equatorial Indian Ocean observed from sea surface height, wind, and temperature data. J. Phys. Oceanogr., 37, 188202, doi:10.1175/JPO3006.1.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1985: Kelvin wave fronts, Rossby solitary waves and the nonlinear spin-up of the equatorial oceans. J. Geophys. Res., 90, 90979107, doi:10.1029/JC090iC05p09097.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., P. Brandt, M. Claus, S. H. Didwischus, and Y. Fu, 2012: On the width of the equatorial deep jets. J. Phys. Oceanogr., 42, 17291740, doi:10.1175/JPO-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Han, W. Q., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastward surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, doi:10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, W. Q., J. P. McCreary, Y. Masumoto, J. Vialard, and B. Duncan, 2011: Basin resonances in the equatorial Indian Ocean. J. Phys. Oceanogr., 41, 12521270, doi:10.1175/2011JPO4591.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and P. de Vries, 2003: Fate of the Equatorial Undercurrent in the Atlantic. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 175–191.

  • Hazeleger, W., P. de Vries, and Y. Friocourt, 2003: Sources of the Equatorial Undercurrent in the Atlantic in a high-resolution ocean model. J. Phys. Oceanogr., 33, 677693, doi:10.1175/1520-0485(2003)33<677:SOTEUI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hummels, R., M. Dengler, P. Brandt, and M. Schlundt, 2014: Diapycnal heat flux and mixed layer heat budget within the Atlantic cold tongue. Climate Dyn., 43, 31793199, doi:10.1007/s00382-014-2339-6.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 1993: Equatorial variability and resonance in a wind-driven Indian-Ocean model. J. Geophys. Res., 98, 22 53322 552, doi:10.1029/93JC02565.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., P. Brandt, B. Bourlès, A. Tantet, A. Papapostolou, and A. Houk, 2014: Zonal structure and seasonal variability of the Atlantic Equatorial Undercurrent. Climate Dyn., 43, 30473069, doi:10.1007/s00382-014-2136-2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and D. X. Zhang, 2003: Structure of the Atlantic Ocean equatorial deep jets. J. Phys. Oceanogr., 33, 600609, doi:10.1175/1520-0485(2003)033<0600:SOTAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., F. Marin, Y. du Penhoat, J. Sheinbaum, and J. M. Molines, 2011: Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean. J. Geophys. Res., 116, C09003, doi:10.1029/2010JC006912.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., F. Marin, Y. du Penhoat, and J. M. Molines, 2013: Intraseasonal modulation of the surface cooling in the Gulf of Guinea. J. Phys. Oceanogr., 43, 382401, doi:10.1175/JPO-D-12-053.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Firing, 1985: The annual Rossby wave in the central equatorial Pacific Ocean. J. Phys. Oceanogr., 15, 5567, doi:10.1175/1520-0485(1985)015<0055:TARWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine version 3.1. Institut Pierre-Simon Laplace Note du Pole de Modélisation 27, 300 pp.

  • McCreary, J. P., 1981: A linear stratified ocean model of the Equatorial Undercurrent. Philos. Trans. Roy. Soc., A298, 603635, doi:10.1098/rsta.1981.0002.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1984: Equatorial beams. J. Mar. Res., 42, 395430, doi:10.1357/002224084788502792.

  • Philander, S. G. H., and R. C. Pacanowski, 1981: Response of equatorial oceans to periodic forcing. J. Geophys. Res., 86, 19031916, doi:10.1029/JC086iC03p01903.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and R. C. Pacanowski, 1986: A model of the seasonal cycle in the tropical Atlantic Ocean. J. Geophys. Res., 91, 14 19214 206, doi:10.1029/JC091iC12p14192.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and Y. Chao, 1991: On the contrast between the seasonal cycles of the equatorial Atlantic and Pacific Oceans. J. Phys. Oceanogr., 21, 13991406, doi:10.1175/1520-0485(1991)021<1399:OTCBTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1997: The zonal momentum balance of the equatorial undercurrent in the central Pacific. J. Phys. Oceanogr., 27, 10941119, doi:10.1175/1520-0485(1997)027<1094:TZMBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. P. McCreary, and G. C. Johnson, 2004: Shallow overturning circulations of the tropical–subtropical oceans. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

  • Schott, F. A., M. Dengler, R. Zantopp, L. Stramma, J. Fischer, and P. Brandt, 2005: The shallow and deep western boundary circulation of the South Atlantic at 5°–11°S. J. Phys. Oceanogr., 35, 20312053, doi:10.1175/JPO2813.1.

    • Search Google Scholar
    • Export Citation
  • Shankar, D., J. P. McCreary, W. Han, and S. R. Shetye, 1996: Dynamics of the East India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J. Geophys. Res., 101, 13 97513 991, doi:10.1029/96JC00559.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1960: Wind-drift near the equator. Deep-Sea Res., 6, 298302, doi:10.1016/0146-6313(59)90088-7.

  • Thierry, V., A. M. Treguier, and H. Mercier, 2004: Numerical study of the annual and semi-annual fluctuations in the deep equatorial Atlantic Ocean. Ocean Modell., 6, 130, doi:10.1016/S1463-5003(02)00054-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1943 862 76
PDF Downloads 536 101 8