A Simple Model for Sheddies: Ocean Eddies Formed from Shed Vorticity

O. R. Southwick Department of Mathematics, University College London, London, United Kingdom

Search for other papers by O. R. Southwick in
Current site
Google Scholar
PubMed
Close
,
E. R. Johnson Department of Mathematics, University College London, London, United Kingdom

Search for other papers by E. R. Johnson in
Current site
Google Scholar
PubMed
Close
, and
N. R. McDonald Department of Mathematics, University College London, London, United Kingdom

Search for other papers by N. R. McDonald in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies show that vertical eddy diffusivity is sufficient on its own to introduce intense horizontal shear layers at sloping ocean margins (Molemaker et al.; Gula et al.; Dewar et al.). These layers influence mesoscale energy and potential vorticity budgets but cannot be fully represented in models without sloping boundaries, no-slip boundary conditions, and sufficiently high resolution. This paper investigates the detachment of these shear layers and their subsequent rolling up into concentrated eddies. These shed eddies, or “sheddies,” may have significant oceanographic impacts. Their growth is considered using a simple point vortex model that adapts the Brown–Michael model of vortex shedding to quasigeostrophic flow and allows detailed consideration of the vorticity fluxes. The model shows good qualitative agreement with observations and experimental and numerical results. It is applied to a number of examples of well-known cases of sheddy formation, including the Agulhas cyclones, California Undercurrent, and Canary Eddy Corridor, and also is used to investigate the effects of shed vorticity in the growth of the Cook Strait eddy and the interaction of the North Brazil Current rings with the islands of the Lesser Antilles.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Oliver Southwick, Department of Mathematics, University College London, Gower St., London, WC1E 6BT, England. E-mail: oliver.southwick.11@ucl.ac.uk

Abstract

Recent studies show that vertical eddy diffusivity is sufficient on its own to introduce intense horizontal shear layers at sloping ocean margins (Molemaker et al.; Gula et al.; Dewar et al.). These layers influence mesoscale energy and potential vorticity budgets but cannot be fully represented in models without sloping boundaries, no-slip boundary conditions, and sufficiently high resolution. This paper investigates the detachment of these shear layers and their subsequent rolling up into concentrated eddies. These shed eddies, or “sheddies,” may have significant oceanographic impacts. Their growth is considered using a simple point vortex model that adapts the Brown–Michael model of vortex shedding to quasigeostrophic flow and allows detailed consideration of the vorticity fluxes. The model shows good qualitative agreement with observations and experimental and numerical results. It is applied to a number of examples of well-known cases of sheddy formation, including the Agulhas cyclones, California Undercurrent, and Canary Eddy Corridor, and also is used to investigate the effects of shed vorticity in the growth of the Cook Strait eddy and the interaction of the North Brazil Current rings with the islands of the Lesser Antilles.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Oliver Southwick, Department of Mathematics, University College London, Gower St., London, WC1E 6BT, England. E-mail: oliver.southwick.11@ucl.ac.uk
Save
  • Barnes, E. J., 1985: Eastern Cook Strait region circulation inferred from satellite–derived, sea–surface, temperature data. N. Z. J. Mar. Freshwater Res., 19, 405411, doi:10.1080/00288330.1985.9516105.

    • Search Google Scholar
    • Export Citation
  • Barton, E. D., 2001: Island wakes. Encyclopedia of Ocean Sciences, Academic Press, 1397–1403, doi:10.1006/rwos.2001.0140.

  • Blondeaux, P., and B. De Bernardinis, 1983: On the formation of vortex pairs near orifices. J. Fluid Mech., 135, 111122, doi:10.1017/S0022112083002980.

    • Search Google Scholar
    • Export Citation
  • Boebel, O., J. Lutjeharms, C. Schmid, W. Zenk, T. Rossby, and C. Barron, 2003: The Cape Cauldron: A regime of turbulent inter-ocean exchange. Deep-Sea Res. II, 50, 5786, doi:10.1016/S0967-0645(02)00379-X.

    • Search Google Scholar
    • Export Citation
  • Boyer, D. L., and L. Tao, 1987: On the motion of linearly stratified rotating fluids past capes. J. Fluid Mech., 180, 429449, doi:10.1017/S0022112087001885.

    • Search Google Scholar
    • Export Citation
  • Brown, C. E., and W. H. Michael Jr., 1954: Effect of leading-edge separation on the lift of a delta wing. J. Aeronaut. Sci., 21, 690694.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., and C.-C. Wu, 2008: Typhoon initialization in a mesoscale model combination of the bogused vortex and the dropwindsonde data in DOTSTAR. Mon. Wea. Rev., 136, 865879, doi:10.1175/2007MWR2141.1.

    • Search Google Scholar
    • Export Citation
  • Collins, C., N. Garfield, T. Rago, F. Rischmiller, and E. Carter, 2000: Mean structure of the inshore countercurrent and California Undercurrent off Point Sur, California. Deep-Sea Res. II, 47, 765782, doi:10.1016/S0967-0645(99)00126-5.

    • Search Google Scholar
    • Export Citation
  • Cortelezzi, L., and A. Leonard, 1993: Point vortex model of the unsteady separated flow past a semi-infinite plate with transverse motion. Fluid Dyn. Res., 11, 263295, doi:10.1016/0169-5983(93)90013-Z.

    • Search Google Scholar
    • Export Citation
  • Cruz Gómez, R. C., and S. N. Bulgakov, 2007: Remote sensing observations of the coherent and non-coherent ring structures in the vicinity of Lesser Antilles. Ann. Geophys., 25, 331340, doi:10.5194/angeo-25-331-2007.

    • Search Google Scholar
    • Export Citation
  • Davey, M., R. Hurst, and E. Johnson, 1993: Topographic eddies in multilayer flow. Dyn. Atmos. Oceans, 18, 127, doi:10.1016/0377-0265(93)90002-O.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 2002: Baroclinic eddy interaction with isolated topography. J. Phys. Oceanogr., 32, 27892805, doi:10.1175/1520-0485(2002)032<2789:BEIWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., J. C. McWilliams, and M. J. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, doi:10.1175/JPO-D-13-0269.1.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, and A. F. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, doi:10.1175/JPO3047.1.

    • Search Google Scholar
    • Export Citation
  • Duran-Matute, M., and O. U. Velasco Fuentes, 2008: Passage of a barotropic vortex through a gap. J. Phys. Oceanogr., 38, 28172831, doi:10.1175/2008JPO3887.1.

    • Search Google Scholar
    • Export Citation
  • Eldredge, J., and C. Wang, 2010: High-fidelity simulations and low-order modeling of a rapidly pitching plate. Proc. 40th Fluid Dynamics Conf. and Exhibit, AIAA Paper 2010-4281, Chicago, IL, AIAA, 1–19.

  • Fratantoni, D. M., and D. A. Glickson, 2002: North Brazil Current ring generation and evolution observed with SeaWiFS. J. Phys. Oceanogr., 32, 10581074, doi:10.1175/1520-0485(2002)032<1058:NBCRGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, D. M., and P. L. Richardson, 2006: The evolution and demise of North Brazil Current rings. J. Phys. Oceanogr., 36, 12411264, doi:10.1175/JPO2907.1.

    • Search Google Scholar
    • Export Citation
  • Garraffo, Z. D., W. Johns, E. Chassignet, and G. Goni, 2003: North Brazil Current rings and transport of southern waters in a high resolution numerical simulation of the North Atlantic. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 375–409, doi:10.1016/S0422-9894(03)80155-1.

  • Goni, G. J., and W. E. Johns, 2001: A census of North Brazil Current rings observed from TOPEX/POSEIDON altimetry: 1992–1998. Geophys. Res. Lett., 28, 14, doi:10.1029/2000GL011717.

    • Search Google Scholar
    • Export Citation
  • Graham, J. M. R., 1980: The forces on sharp-edged cylinders in oscillatory flow at low Keulegan–Carpenter numbers. J. Fluid Mech., 97, 331346, doi:10.1017/S0022112080002595.

    • Search Google Scholar
    • Export Citation
  • Graham, J. M. R., 1983: The lift on an aerofoil in starting flow. J. Fluid Mech., 133, 413425, doi:10.1017/S0022112083001986.

  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, doi:10.1002/2015GL063731.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., D. P. Stevens, and G. R. Bigg, 1996: Eddy formation behind the tropical island of Aldabra. Deep-Sea Res. I, 43, 555578, doi:10.1016/0967-0637(96)00097-0.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and H. M. Stommel, 1985: The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proc. Roy. Soc. London, A397, 120, doi:10.1098/rspa.1985.0001.

    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., C.-S. Liou, T.-C. Yeh, Y.-R. Guo, D.-S. Chen, K.-N. Huang, C.-T. Terng, and J.-H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 32983315, doi:10.1175/2010MWR3275.1.

    • Search Google Scholar
    • Export Citation
  • Isoguchi, O., M. Shimada, F. Sakaida, and H. Kawamura, 2009: Investigation of Kuroshio-induced cold-core eddy trains in the lee of the Izu Islands using high-resolution satellite images and numerical simulations. Remote Sens. Environ., 113, 19121925, doi:10.1016/j.rse.2009.04.017.

    • Search Google Scholar
    • Export Citation
  • Jiang, M., M. Zhou, S. P. Libby, and D. M. Anderson, 2011: Dynamics of a mesoscale eddy off Cape Ann, Massachusetts in May 2005. Deep-Sea Res. I, 58, 11301146, doi:10.1016/j.dsr.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., R. J. Zantopp, and G. Goni, 2003: Cross-gyre transport by North Brazil Current rings. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68. Elsevier, 411–441, doi:10.1016/S0422-9894(03)80156-3.

  • Johnson, E. R., and N. R. McDonald, 2005: Vortices near barriers with multiple gaps. J. Fluid Mech., 531, 335358, doi:10.1017/S0022112005003976.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., 1994: Baroclinic eddy generation at a sharp corner in a rotating system. J. Geophys. Res., 99, 12 51512 531, doi:10.1029/93JC03585.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, doi:10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., O. Boebel, and H. T. Rossby, 2003: Agulhas cyclones. Deep-Sea Res. II, 50, 1334, doi:10.1016/S0967-0645(02)00378-8.

    • Search Google Scholar
    • Export Citation
  • Manela, A., and L. Huang, 2013: Point vortex model for prediction of sound generated by a wing with flap interacting with a passing vortex. J. Acoust. Soc. Amer., 133, 19341944, doi:10.1121/1.4792246.

    • Search Google Scholar
    • Export Citation
  • Michelin, S., and S. G. Llewellyn Smith, 2010: Falling cards and flapping flags: Understanding fluid solid interactions using an unsteady point vortex model. Theor. Comput. Fluid Dyn., 24, 195200, doi:10.1007/s00162-009-0117-6.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, doi:10.1175/JPO-D-13-0225.1.

    • Search Google Scholar
    • Export Citation
  • Nilawar, R. S., E. R. Johnson, and N. R. McDonald, 2012: Finite Rossby radius effects on vortex motion near a gap. Phys. Fluids, 24, 066601, doi:10.1063/1.4721432.

    • Search Google Scholar
    • Export Citation
  • Nof, D., T. Pichevin, and J. Sprintall, 2002: “Teddies” and the origin of the Leeuwin Current. J. Phys. Oceanogr., 32, 25712588, doi:10.1175/1520-0485-32.9.2571.

    • Search Google Scholar
    • Export Citation
  • Pedrizzetti, G., 2010: Vortex formation out of two-dimensional orifices. J. Fluid Mech., 655, 198216, doi:10.1017/S0022112010000844.

  • Penven, P., J. R. E. Lutjeharms, P. Marchesiello, C. Roy, and S. J. Weeks, 2001: Generation of cyclonic eddies by the Agulhas Current in the lee of the Agulhas Bank. Geophys. Res. Lett., 28, 10551058, doi:10.1029/2000GL011760.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., 1996: A shallow subtropical subducting westward propagating eddy (Swesty). Philos. Trans. Roy. Soc. London, A354, 9791026, doi:10.1098/rsta.1996.0039.

    • Search Google Scholar
    • Export Citation
  • Richardson, P., 2005: Caribbean Current and eddies as observed by surface drifters. Deep-Sea Res. II, 52, 429463, doi:10.1016/j.dsr2.2004.11.001.

    • Search Google Scholar
    • Export Citation
  • Rott, N., 1956: Diffraction of a weak shock with vortex generation. J. Fluid Mech., 1, 111128, doi:10.1017/S0022112056000081.

  • Sangrà, P., and Coauthors, 2007: On the nature of oceanic eddies shed by the Island of Gran Canaria. Deep-Sea Res. I, 54, 687709, doi:10.1016/j.dsr.2007.02.004.

    • Search Google Scholar
    • Export Citation
  • Sangrà, P., and Coauthors, 2009: The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic. Deep-Sea Res. I, 56, 21002114, doi:10.1016/j.dsr.2009.08.008.

    • Search Google Scholar
    • Export Citation
  • Serra, N., I. Ambar, and R. H. Käse, 2005: Observations and numerical modelling of the Mediterranean outflow splitting and eddy generation. Deep-Sea Res. II, 52, 383408, doi:10.1016/j.dsr2.2004.05.025.

    • Search Google Scholar
    • Export Citation
  • Sheng, J. X., A. Ysasi, E. Kanso, M. Nitsche, and K. Schneider, 2011: Simulating vortex wakes of flapping plates. Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding, S. Childress et al., Eds., IMA Volumes in Mathematics and its Applications, Vol. 155, Springer, 255262, doi:10.1007/978-1-4614-3997-4_21.

  • Simmons, H. L., and D. Nof, 2002: The squeezing of eddies through gaps. J. Phys. Oceanogr., 32, 314335, doi:10.1175/1520-0485(2002)032<0314:TSOETG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Southwick, O. R., E. R. Johnson, and N. R. McDonald, 2015: A point vortex model for the formation of ocean eddies by flow separation. Phys. Fluids, 27, 016604, doi:10.1063/1.4906112.

    • Search Google Scholar
    • Export Citation
  • Tanabe, A., and C. Cenedese, 2008: Laboratory experiments on mesoscale vortices colliding with an island chain. J. Geophys. Res., 113, C04022, doi:10.1029/2007JC004322.

    • Search Google Scholar
    • Export Citation
  • Walters, R. A., P. A. Gillibrand, R. G. Bell, and E. M. Lane, 2010: A study of tides and currents in Cook Strait, New Zealand. Ocean Dyn., 60, 15591580, doi:10.1007/s10236-010-0353-8.

    • Search Google Scholar
    • Export Citation
  • Ysasi, A., E. Kanso, and P. K. Newton, 2011: Wake structure of a deformable Joukowski airfoil. Physica D, 240, 15741582, doi:10.1016/j.physd.2011.06.021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 874 369 13
PDF Downloads 432 66 3