Two-Temperature Nonequilibrium Model of a Marine Boundary Layer Laden with Evaporating Ocean Spray under High-Wind Conditions

Yevgenii Rastigejev North Carolina Agricultural and Technical State University, Greensboro, North Carolina

Search for other papers by Yevgenii Rastigejev in
Current site
Google Scholar
PubMed
Close
and
Sergey A. Suslov Swinburne University of Technology, Hawthorn, Victoria, Australia

Search for other papers by Sergey A. Suslov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A nonequilibrium two-temperature multiphase model of the atmospheric boundary layer above wave crests that is laden with evaporating ocean spray in high-wind condition is presented. The governing equations are derived from basic physical principles of conservation of momentum, mass, and thermal energy in multiphase flows. The model derivation uses an Eulerian multifluid approach that considers spray as a continuous medium interacting with the gas phase. The Eε turbulence closure is used. The developed theoretical framework accounts for the nonuniform ocean spray distribution and the thermal energy exchange between air and spray droplets that, in general, have different temperatures above the wave crest level. Such thermodynamic nonequilibrium conditions are shown to exist when the spray concentration is relatively low and the air humidity is far from saturation. The mechanical and thermodynamic effects of the evaporating spray on airflow and heat transport characteristics are obtained and shown to depend sensitively on the spray concentration.

Corresponding author address: Yevgenii Rastigejev, Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 302 Gibbs Hall, 1601 E. Market St., Greensboro, NC 27411. E-mail: yarastig@ncat.edu

Abstract

A nonequilibrium two-temperature multiphase model of the atmospheric boundary layer above wave crests that is laden with evaporating ocean spray in high-wind condition is presented. The governing equations are derived from basic physical principles of conservation of momentum, mass, and thermal energy in multiphase flows. The model derivation uses an Eulerian multifluid approach that considers spray as a continuous medium interacting with the gas phase. The Eε turbulence closure is used. The developed theoretical framework accounts for the nonuniform ocean spray distribution and the thermal energy exchange between air and spray droplets that, in general, have different temperatures above the wave crest level. Such thermodynamic nonequilibrium conditions are shown to exist when the spray concentration is relatively low and the air humidity is far from saturation. The mechanical and thermodynamic effects of the evaporating spray on airflow and heat transport characteristics are obtained and shown to depend sensitively on the spray concentration.

Corresponding author address: Yevgenii Rastigejev, Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 302 Gibbs Hall, 1601 E. Market St., Greensboro, NC 27411. E-mail: yarastig@ncat.edu
Save
  • Andreas, E. L, 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B, 481497, doi:10.1034/j.1600-0889.1990.t01-3-00007.x.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184, doi:10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, doi:10.1002/qj.2424.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., 2011: Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press, 480 pp.

  • Babanin, A. V., and V. K. Makin, 2008: Effects of wind trend and gustiness on the sea drag: Lake George study. J. Geophys. Res., 113, C02015, doi:10.1029/2007JC004233.

    • Search Google Scholar
    • Export Citation
  • Bao, J. W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, doi:10.1175/MWR-D-11-00007.1.

    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., 1953: On the motion of suspended droplets in a turbulent flow. Prikl. Mat. Mekh., 7 (3), 261274.

  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381, doi:10.1007/s10546-011-9617-1.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes. Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Brennen, C. E., 2005: Fundamentals of Multiphase Flow. Cambridge University Press, 368 pp.

  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, doi:10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. F. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flesch, T. K., J. H. Prueger, and J. L. Hatfield, 2002: Turbulent Schmidt number from a tracer experiment. Agric. For. Meteor., 111, 299307, doi:10.1016/S0168-1923(02)00025-4.

    • Search Google Scholar
    • Export Citation
  • Gidaspow, D., 1994: Multiphase Flow and Fluidization. Academic Press, 467 pp.

  • Ginis, I., A. P. Khain, and E. Morozovsky, 2004: Effects of large eddies on the structure of the marine boundary layer under strong wind conditions. J. Atmos. Sci., 61, 30493064, doi:10.1175/JAS-3342.1.

    • Search Google Scholar
    • Export Citation
  • Jakobsen, H. A., 2008: Chemical Reactor Modeling: Multiphase Reactive Flows. Springer, 1535 pp.

  • Janssen, P. A. E. M., 1999: On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique. J. Phys. Oceanogr., 29, 530534, doi:10.1175/1520-0485(1999)029<0530:OTEOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Search Google Scholar
    • Export Citation
  • Jha, S. K., and F. A. Bombardelli, 2009: Two-phase modeling of turbulence in dilute sediment-laden, open-channel flows. Environ. Fluid Mech., 9, 237266, doi:10.1007/s10652-008-9118-z.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. W., 1998: Handbook of Fluid Dynamics. CRC Press, 1952 pp.

  • Korolev, V. S., S. A. Petrichenko, and V. D. Pudov, 1990: Heat and moisture exchange between the ocean and atmosphere in tropical storms tess and skip. Sov. Meteor. Hydrol., 3, 9294.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, doi:10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142, doi:10.1023/A:1004383430896.

  • Makin, V. K., 1998: Air-sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103, 11371152, doi:10.1029/97JC02908.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, doi:10.1007/s10546-004-3647-x.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1971: The Physics of Clouds. Oxford University Press, 688 pp.

  • Monin, A. S., and A. M. Yaglom, 2007: Statistical Fluid Mechanics—Volume I: Mechanics of Turbulence. Dover Publications, 782 pp.

  • Mueller, J. A., and F. Veron, 2014a: Impact of sea spray on air–sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr., 44, 28172834, doi:10.1175/JPO-D-13-0245.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014b: Impact of sea spray on air–sea fluxes. Part II: Feedback effects. J. Phys. Oceanogr., 44, 28352853, doi:10.1175/JPO-D-13-0246.1.

    • Search Google Scholar
    • Export Citation
  • Peskin, C. S., 1977: Numerical analysis of blood flow in the heart. J. Comput. Phys., 25, 220252, doi:10.1016/0021-9991(77)90100-0.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1996: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the national hurricane center. Wea. Forecasting, 24, 395, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., and S. A. Suslov, 2014: Model of spray-laden near-sea atmospheric layer in high wind conditions. J. Phys. Oceanogr., 44, 742763, doi:10.1175/JPO-D-12-0195.1.

    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., S. A. Suslov, and Y.-L. Lin, 2011: Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound.-Layer Meteor., 141, 120, doi:10.1007/s10546-011-9625-1.

    • Search Google Scholar
    • Export Citation
  • Raudkivi, A. J., 1976: Loose Boundary Hydraulics. 2nd ed., Pergamon Press, 512 pp.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed., Pergamon Press, 293 pp.

  • Shpund, J., J. A. Zhang, M. Pinsky, and A. Khain, 2012: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci., 69, 35013514, doi:10.1175/JAS-D-11-0281.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Toffoli, A., A. V. Babanin, M. A. Donelan, B. K. Haus, and D. Jeong, 2011: Estimating sea spray concentration with the laser altimeter. J. Atmos. Oceanic Technol., 28, 11771183, doi:10.1175/2011JTECHO827.1.

    • Search Google Scholar
    • Export Citation
  • Tominaga, Y., and T. Stathopoulos, 2007: Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos. Environ., 41, 80918099, doi:10.1016/j.atmosenv.2007.06.054.

    • Search Google Scholar
    • Export Citation
  • Tsonis, A., 2007: An Introduction to Atmospheric Thermodynamics. 2nd ed., Cambridge University Press, 198 pp.

  • Vakhguelt, A., 2007: Mathematical model of interaction between finite amplitude wave and the liquid particles. Proc. 18th Australasian Coastal and Ocean Engineering Conf. and the 11th Australasian Port and Harbour Conf., Melbourne, VIC, Australia, Engineers Australia, 791–796.

  • Van Eijk, A. M. J., B. S. Tranchant, and P. G. Mestayer, 2001: SeaCluse: Numerical simulation of evaporating sea spray droplets. J. Geophys. Res., 106, 25732588, doi:10.1029/2000JC000377.

    • Search Google Scholar
    • Export Citation
  • Veron, F., C. Hopkins, E. L Harrison, and J. A. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett., 39, L16602, doi:10.1029/2012GL052603.

    • Search Google Scholar
    • Export Citation
  • Wang, X., B. Jin, and W. Zhong, 2009: Three-dimensional simulation of fluidized bed coal gasification. Chem. Eng. Process., 48, 695705, doi:10.1016/j.cep.2008.08.006.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1979: Spray in the atmospheric surface layer: Review and analysis of laboratory and ocean results. J. Geophys. Res., 84, 16931704, doi:10.1029/JC084iC04p01693.

    • Search Google Scholar
    • Export Citation
  • Zedler, S., G. Kanschat, I. Hoteit, and R. Korty, 2013: Estimation of the drag coefficient from the upper ocean response to a hurricane: A variational data assimilation approach. Ocean Modell., 68, 5771, doi:10.1016/j.ocemod.2013.04.004.

    • Search Google Scholar
    • Export Citation
  • Zweers, N., V. Makin, J. de Vries, and V. Kudryavtsev, 2015: The impact of spray-mediated enhanced enthalpy and reduced drag coefficients in the modelling of tropical cyclones. Bound.-Layer Meteor., 155, 501514, doi:10.1007/s10546-014-9996-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 881 566 41
PDF Downloads 242 32 1