A Linear Stochastic Field Model of Midlatitude Mesoscale Variability

R. M. Samelson College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by R. M. Samelson in
Current site
Google Scholar
PubMed
Close
,
M. G. Schlax College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by M. G. Schlax in
Current site
Google Scholar
PubMed
Close
, and
D. B. Chelton College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by D. B. Chelton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A semiempirical model of midlatitude sea surface height (SSH) variability is formulated and tested against two decades of weekly global fields of merged altimeter data. The model is constrained to match approximately the observed SSH wavenumber power spectrum, but it predicts the spatiotemporal SSH field structure as a propagating, damped, linear response to a stochastic forcing field. An objective, coherent-eddy identification and tracking procedure is applied to the model and altimeter SSH fields, with a focus on eddies with lifetimes L ≥ 16 weeks. The model eddy dataset reproduces the basic global-mean characteristics of the altimeter eddy dataset, including the structure of mean amplitude and scale life cycles, the number distributions versus lifetime, and the distributions of all eddy length scale realizations. The model underpredicts the numbers of eddy realizations with large amplitudes and large scales, overpredicts the growth of mean amplitude and scale with lifetime, and modestly overpredicts the curvature of the mean amplitude life cycle and the number of eddies with intermediate lifetimes. The stochastic forcing evidently represents nonlinear dynamical interactions, implying that eddy splitting and merging events are equally likely, and that mesoscale nonlinearity is weaker than longwave linearity but as strong as shortwave dispersion. The time-reversal symmetry of the life cycles is explained by the time reversibility of the underlying stochastic model. The random SSH increment processes are effectively continuous on the derived 25-week damping time scale, with SSH-increment standard deviation σW ≈ 2.5 × 10−3 cm s−1/2.

Denotes Open Access content.

Corresponding author address: Roger M. Samelson, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR 97331-5503. E-mail: rsamelson@coas.oregonstate.edu

Abstract

A semiempirical model of midlatitude sea surface height (SSH) variability is formulated and tested against two decades of weekly global fields of merged altimeter data. The model is constrained to match approximately the observed SSH wavenumber power spectrum, but it predicts the spatiotemporal SSH field structure as a propagating, damped, linear response to a stochastic forcing field. An objective, coherent-eddy identification and tracking procedure is applied to the model and altimeter SSH fields, with a focus on eddies with lifetimes L ≥ 16 weeks. The model eddy dataset reproduces the basic global-mean characteristics of the altimeter eddy dataset, including the structure of mean amplitude and scale life cycles, the number distributions versus lifetime, and the distributions of all eddy length scale realizations. The model underpredicts the numbers of eddy realizations with large amplitudes and large scales, overpredicts the growth of mean amplitude and scale with lifetime, and modestly overpredicts the curvature of the mean amplitude life cycle and the number of eddies with intermediate lifetimes. The stochastic forcing evidently represents nonlinear dynamical interactions, implying that eddy splitting and merging events are equally likely, and that mesoscale nonlinearity is weaker than longwave linearity but as strong as shortwave dispersion. The time-reversal symmetry of the life cycles is explained by the time reversibility of the underlying stochastic model. The random SSH increment processes are effectively continuous on the derived 25-week damping time scale, with SSH-increment standard deviation σW ≈ 2.5 × 10−3 cm s−1/2.

Denotes Open Access content.

Corresponding author address: Roger M. Samelson, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR 97331-5503. E-mail: rsamelson@coas.oregonstate.edu
Save
  • Allen, J. S., and D. W. Denbo, 1984: Statistical characteristics of the large-scale response of coastal sea level to atmospheric forcing. J. Phys. Oceanogr., 14, 10791094, doi:10.1175/1520-0485(1984)014<1079:SCOTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bensoussan, A., and R. Temam, 1973: Equations stochastiques du type Navier-Stokes. J. Funct. Anal., 13, 195222, doi:10.1016/0022-1236(73)90045-1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., 2005: Random-forcing model of the mesoscale oceanic eddies. J. Fluid Mech., 529, 7195, doi:10.1017/S0022112005003393.

    • Search Google Scholar
    • Export Citation
  • Bhattacharya, R. N., and E. C. Waymire, 2009: Stochastic Processes with Applications. Society for Industrial and Applied Mathematics, 672 pp.

  • Brink, K. H., 1989: Evidence for wind-driven current fluctuations in the western North Atlantic. J. Geophys. Res., 94, 20292044, doi:10.1029/JC094iC02p02029.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 224 pp.

  • Crommelin, D., and E. Vanden-Eijnden, 2008: Subgrid-scale parameterization with conditional Markov chains. J. Atmos. Sci., 65, 26612675, doi:10.1175/2008JAS2566.1.

    • Search Google Scholar
    • Export Citation
  • Dantzler, H. L., 1977: Potential energy maxima in the tropical and subtropical North Atlantic. J. Phys. Oceanogr., 7, 512519, doi:10.1175/1520-0485(1977)007<0512:PEMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., 1983: Solitons. London Mathematical Society Lecture Note Series, No. 85, Cambridge University Press, 136 pp.

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, doi:10.1175/2011JPO4601.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1987: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, doi:10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., and A. J. Majda, 2013: Efficient stochastic superparameterization for geophysical turbulence. Proc. Natl. Acad. Sci. USA, 110, 44644469, doi:10.1073/pnas.1302548110.

    • Search Google Scholar
    • Export Citation
  • Klebaner, F., 1998: Introduction to Stochastic Calculus with Applications. Imperial College Press, 432 pp.

  • Kraichnan, R. H., 1959: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497543, doi:10.1017/S0022112059000362.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28, 145161, doi:10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, doi:10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and Coauthors, 1983: The local dynamics of eddies in the western North Atlantic. Eddies in Marine Science, A. R. Robinson, Ed., Springer, 92–113, doi:10.1007/978-3-642-69003-7_5.

  • Mikosch, T., 1998: Elementary Stochastic Calculus with Finance in View. World Scientific, 212 pp.

  • Mitas, C., 2000: Eddy PV fluxes in a one-dimensional model of quasi-geostrophic turbulence. The General Circulation of the Atmosphere: Proceedings of the 2000 Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution, 120–137.

  • MODE Group, 1978: The mid-ocean dynamics experiment. Deep-Sea Res., 25, 859910, doi:10.1016/0146-6291(78)90632-X.

  • Mörters, P., and Y. Peres, 2010: Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics, No. 30, Cambridge University Press, 416 pp.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and C. Frankignoul, 1981: Direct atmospheric forcing of geostrophic eddies. J. Phys. Oceanogr., 11, 287308, doi:10.1175/1520-0485(1981)011<0287:DAFOGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ōsawa, H., 1988: Reversibility of first-order autoregressive processes. Stochastic Processes Appl., 28, 6169, doi:10.1016/0304-4149(88)90064-6.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed., Springer, 710 pp.

  • Porta Mana, P., and L. Zanna, 2014: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modell., 79, 120, doi:10.1016/j.ocemod.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1983: Overview and summary of eddy science. Eddies in Marine Science, A. R. Robinson, Ed., Springer, 3–15, doi:10.1007/978-3-642-69003-7_1.

  • Samelson, R. M., 1990: Evidence for wind-driven current fluctuations in the eastern North Atlantic. J. Geophys. Res., 95, 11 359–11 368, doi:10.1029/JC095iC07p11359; Corrigendum, 97, 821–822, doi:10.1029/91JC02892.

  • Samelson, R. M., M. G. Schlax, and D. B. Chelton, 2014: Randomness, symmetry, and scaling of mesoscale eddy life cycles. J. Phys. Oceanogr., 44, 1012–1029, doi:10.1175/JPO-D-13-0161.1; Corrigendum, 44, 2588–2589, doi:10.1175/JPO-D-14-0139.1.

  • Schmitz, W. J., W. R. Holland, and J. F. Price, 1983: Mid-latitude mesoscale variability. Rev. Geophys., 21, 11091119, doi:10.1029/RG021i005p01109.

    • Search Google Scholar
    • Export Citation
  • Williams, S., M. Petersen, P.-T. Bremer, M. Hecht, V. Pascucci, J. Ahrens, M. Hlawitschka, and B. Hamann, 2011: Adaptive extraction and quantification of geophysical vortices. IEEE Trans. Visualization Comput. Graphics, 17, 20882095, doi:10.1109/TVCG.2011.162.

    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, doi:10.1175/JPO-D-13-0113.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1981: Low-frequency variability of the sea. The Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 342–374.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., L. Magaard, and J. Hager, 1976: Eddy energy in the oceans. J. Geophys. Res., 81, 26412646, doi:10.1029/JC081i015p02641.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1460 1254 41
PDF Downloads 166 28 3