Cruise Observation of Rossby Waves with Finite Wavelengths Propagating from the Pacific to the South China Sea

Lingling Xie Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang, China
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Lingling Xie in
Current site
Google Scholar
PubMed
Close
,
Quanan Zheng Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Quanan Zheng in
Current site
Google Scholar
PubMed
Close
,
Jiwei Tian Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Jiwei Tian in
Current site
Google Scholar
PubMed
Close
,
Shuwen Zhang Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang, China

Search for other papers by Shuwen Zhang in
Current site
Google Scholar
PubMed
Close
,
Ying Feng State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Ying Feng in
Current site
Google Scholar
PubMed
Close
, and
Xiaofei Yi Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang, China

Search for other papers by Xiaofei Yi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study deals with the physical properties and 3D structures of the wave motions with finite wavelengths of O(100–550) km in the tropical western North Pacific and their variation as propagating from the Pacific to the South China Sea (SCS) using conductivity–temperature–depth observations taken in October and November 2005 and concurrent satellite altimeter data. Three wave components with wavelength bands of O(100), O(200), and O(550) km are derived from the isopycnal undulation signals along 21°, 18°, and 15°N using the ensemble empirical mode decomposition analysis. Their maximum amplitudes are over 100 m in the layer of 1000–2000 m. Phase speeds are derived from cruise-observed vertical profiles of zonal-mean geostrophic flow velocity and the Brunt–Väisälä frequency based on linear quasigeostrophic wave theory with background flow and topography. The speeds are also derived from concurrent sea level anomaly data with the objective Radon transform method. They are close to that of the first baroclinic mode of theoretical solutions, implying that the observed wave motions possess the physical properties of Rossby waves (RWs). The vertical structures of the first generalized modes are derived from cruise observations at three sections. It is shown that the RWs continuously propagate from the Pacific to the SCS, and the available potential energy of RWs 1 and 2 intensify 3–4 times in the Luzon Strait and the SCS compared to that in the Pacific.

Corresponding author address: Lingling Xie, Department of Atmospheric and Oceanic Science, 2421 Computer and Space Science Building, University of Maryland, College Park, College Park, MD 20742. E-mail: llingxie@umd.edu

Abstract

This study deals with the physical properties and 3D structures of the wave motions with finite wavelengths of O(100–550) km in the tropical western North Pacific and their variation as propagating from the Pacific to the South China Sea (SCS) using conductivity–temperature–depth observations taken in October and November 2005 and concurrent satellite altimeter data. Three wave components with wavelength bands of O(100), O(200), and O(550) km are derived from the isopycnal undulation signals along 21°, 18°, and 15°N using the ensemble empirical mode decomposition analysis. Their maximum amplitudes are over 100 m in the layer of 1000–2000 m. Phase speeds are derived from cruise-observed vertical profiles of zonal-mean geostrophic flow velocity and the Brunt–Väisälä frequency based on linear quasigeostrophic wave theory with background flow and topography. The speeds are also derived from concurrent sea level anomaly data with the objective Radon transform method. They are close to that of the first baroclinic mode of theoretical solutions, implying that the observed wave motions possess the physical properties of Rossby waves (RWs). The vertical structures of the first generalized modes are derived from cruise observations at three sections. It is shown that the RWs continuously propagate from the Pacific to the SCS, and the available potential energy of RWs 1 and 2 intensify 3–4 times in the Luzon Strait and the SCS compared to that in the Pacific.

Corresponding author address: Lingling Xie, Department of Atmospheric and Oceanic Science, 2421 Computer and Space Science Building, University of Maryland, College Park, College Park, MD 20742. E-mail: llingxie@umd.edu
Save
  • Aoki, K., A. Kubokawa, H. Sasaki, and Y. Sasai, 2009: Midlatitude baroclinic Rossby waves in a high-resolution OGCM simulation. J. Phys. Oceanogr., 39, 22642279, doi:10.1175/2009JPO4137.1.

    • Search Google Scholar
    • Export Citation
  • Challenor, P. G., P. Cipollini, and D. Cromwell, 2001: Use of the 3D radon transform to examine the properties of oceanic Rossby waves. J. Atmos. Oceanic Technol., 18, 15581566, doi:10.1175/1520-0426(2001)018<1558:UOTRTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, doi:10.1126/science.272.5259.234.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics Physical and Numerical Aspects. Academic Press, 875 pp.

  • Hu, J., H. Kawamura, H. Hong, F. Kobashi, and D. Wang, 2001: 3 ≈ 6 months variation of sea surface height in the South China Sea and its adjacent ocean. J. Oceanogr., 57, 6978, doi:10.1023/A:1011126804461.

    • Search Google Scholar
    • Export Citation
  • Hu, J., Q. Zheng, Z. Sun, and C.-K. Tai, 2012: Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. J. Geophys. Res., 117, C03010, doi:10.1029/2011JC007525.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, A454, 903995, doi:10.1098/rspa.1998.0193.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, doi:10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2005: The dispersion relation for planetary waves in the presence of mean flow and topography. Part II: Two-dimensional examples and global results. J. Phys. Oceanogr., 35, 21102133, doi:10.1175/JPO2817.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, doi:10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and H. Kawamura, 2001: Variation of sea surface height at periods of 65–220 days in the subtropical gyre of the North Pacific. J. Geophys. Res., 106, 26 81726 831, doi:10.1029/2000JC000361.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., J. S. Allen, and R. L. Smith, 1975: Modal decomposition of the velocity field near the Oregon coast. J. Phys. Oceanogr., 5, 683704, doi:10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and T. B. Ouarda, 2012: An EMD and PAC hybrid approach for separating noise from signal, and signal in climate change detection. Int. J. Climatol., 32, 624634, doi:10.1002/joc.2299.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., and J. F. Minster, 1993: Sea level variability and semiannual Rossby waves in the South Atlantic Subtropical Gyre. J. Geophys. Res., 98, 12 31512 326, doi:10.1029/93JC00456.

    • Search Google Scholar
    • Export Citation
  • Li, L., C. Jing, and D. Zhu, 2007: Coupling and propagating of mesoscale sea level variability between the western Pacific and the South China Sea. Chin. Sci. Bull., 52, 16991707, doi:10.1007/s11434-007-0203-3.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., L. Oey, J. Wang, and K. Liu, 2016: Rossby waves and eddies observed at a temperature mooring in northern South China Sea. J. Phys. Oceanogr., 46, 517535, doi:10.1175/JPO-D-15-0094.1.

    • Search Google Scholar
    • Export Citation
  • Maharaj, A. M., P. Cipollini, N. J. Holbrook, P. D. Killworth, and J. R. Blundell, 2007: An evaluation of the classical and extended Rossby wave theories in explaining spectral estimates of the first few baroclinic modes in the South Pacific Ocean. Ocean Dyn., 57, 173187, doi:10.1007/s10236-006-0099-5.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp. [Available online at www.teos-10.org/pubs/Getting_Started.pdf.]

  • O’Brien, R. C., P. Cipollini, and J. R. Blundell, 2013: Manifestation of oceanic Rossby waves in long-term multiparametric satellite datasets. Remote Sens. Environ., 129, 111121, doi:10.1016/j.rse.2012.10.024.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Polito, P. S., and W. T. Liu, 2003: Global characterization of Rossby waves at several spectral bands. J. Geophys. Res., 108, 3018, doi:10.1029/2000JC000607.

    • Search Google Scholar
    • Export Citation
  • Polito, P. S., and O. T. Sato, 2015: Do eddies ride on Rossby waves? J. Geophys. Res. Oceans, 120, 54175435, doi:10.1002/2015JC010737.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., W. Miao, and P. Muller, 1997: Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr., 27, 24052417, doi:10.1175/1520-0485(1997)027<2405:PADOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and T. Yamagata, 1998: On the western boundary currents in the Philippine Sea. J. Geophys. Res., 103, 75377548, doi:10.1029/98JC00263.

    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and T. Yamagata, 2000: Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res., 105, 64156424, doi:10.1029/1999JC900323.

    • Search Google Scholar
    • Export Citation
  • Qu, T., J. B. Girton, and J. A. Whitehead, 2006: Deepwater overflow through Luzon Strait. J. Geophys. Res., 111, C01002, doi:10.1029/2005JC003139.

    • Search Google Scholar
    • Export Citation
  • Sheu, W. J., C.-R. Wu, and L.-Y. Oey, 2010: Blocking and westward passage of eddies in the Luzon Strait. Deep-Sea Res., 57, 17831791, doi:10.1016/j.dsr2.2010.04.004.

    • Search Google Scholar
    • Export Citation
  • Song, H., B. Yang, L. Pinheiro, C. Dong, X. Huang, and B. Liu, 2012: Analysis of ocean internal waves imaged by multichannel reflection seismics, using ensemble empirical mode decomposition. J. Geophys. Eng., 9, 302331, doi:10.1088/1742-2132/9/3/302.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., 2009: Introduction to Physical Oceanography. University Press of Florida, 345 pp.

  • Tailleux, R., 2012: On the generalized eigenvalue problem for the Rossby wave vertical velocity in the presence of mean flow and topography. J. Phys. Oceanogr., 42, 10451050, doi:10.1175/JPO-D-12-010.1.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 14611476, doi:10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, and K. S. Smith, 2009: Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. J. Geophys. Res., 114, C02005, doi:10.1029/2008JC005055.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., and T.-L. Chiang, 2007: Mesoscale eddies in the northern South China Sea. Deep-Sea Res., 54, 15751588, doi:10.1016/j.dsr2.2007.05.008.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., and N. E. Huang, 2005: Statistical significance test of intrinsic mode functions. Hilbert-Huang Transform and Its Applications, N. E. Huang and S. P. Shen, Eds., World Scientific, 107–128.

  • Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 01, 1, doi:10.1142/S1793536909000047.

    • Search Google Scholar
    • Export Citation
  • Xie, L., J. Tian, D. Hu, and F. Wang, 2009a: A quasi-synoptic interpretation of water mass distribution and circulation in the western North Pacific: I. Water mass distribution. Chin. J. Oceanology Limnol., 27, 630639, doi:10.1007/s00343-009-9161-8.

    • Search Google Scholar
    • Export Citation
  • Xie, L., J. Tian, D. Hu, and F. Wang, 2009b: A quasi-synoptic interpretation of water mass distribution and circulation in the western North Pacific: II. Circulation. Chin. J. Oceanol. Limnol., 27, 955965, doi:10.1007/s00343-009-9240-x.

    • Search Google Scholar
    • Export Citation
  • Xie, L., J. Tian, S. Zhang, Y. Zhang, and Q. Yang, 2011: An anticyclonic eddy in the intermediate layer of the Luzon Strait in autumn 2005. J. Oceanogr., 67, 3746, doi:10.1007/s10872-011-0004-9.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and Q. Liu, 2003: Forced Rossby wave in the northern South China Sea. Deep-Sea Res., 50, 917926, doi:10.1016/S0967-0637(03)00074-8.

    • Search Google Scholar
    • Export Citation
  • Zang, X., and C. Wunsch, 1999: The observed dispersion relationship for North Pacific Rossby wave motions. J. Phys. Oceanogr., 29, 21832190, doi:10.1175/1520-0485(1999)029<2183:TODRFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., C.-K. Tai, J. Hu, H. Lin, R.-H. Zhang, F.-C. Su, and X. Yang, 2011: Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J. Oceanogr., 67, 365376, doi:10.1007/s10872-011-0035-2.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., and Coauthors, 2014: Standing wave modes observed in the South China Sea deep basin. J. Geophys. Res. Oceans, 119, 41854199, doi:10.1002/2014JC009957.

    • Search Google Scholar
    • Export Citation
  • Zhuang, W., S. Xie, D. Wang, B. Taguchi, H. Aiki, and H. Sasaki, 2010: Intraseasonal variability in sea surface height over the South China Sea. J. Geophys. Res., 115, C04010, doi:10.1029/2009JD013165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1233 609 39
PDF Downloads 446 101 6