Pathways and Water Mass Properties of the Thermocline and Intermediate Waters in the Solomon Sea

Cyril Germineaud Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

Search for other papers by Cyril Germineaud in
Current site
Google Scholar
PubMed
Close
,
Alexandre Ganachaud Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

Search for other papers by Alexandre Ganachaud in
Current site
Google Scholar
PubMed
Close
,
Janet Sprintall Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Janet Sprintall in
Current site
Google Scholar
PubMed
Close
,
Sophie Cravatte Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

Search for other papers by Sophie Cravatte in
Current site
Google Scholar
PubMed
Close
,
Gérard Eldin Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

Search for other papers by Gérard Eldin in
Current site
Google Scholar
PubMed
Close
,
Marion S. Alberty Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Marion S. Alberty in
Current site
Google Scholar
PubMed
Close
, and
Emilien Privat Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

Search for other papers by Emilien Privat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The semienclosed Solomon Sea is the final passage in the equatorward transit of the South Pacific western boundary currents (WBCs) that play a key role in heat and mass budgets of the equatorial Pacific. The Solomon WBCs and their associated water properties are examined using data from two oceanographic cruises undertaken during the contrasting trade wind seasons: July 2012 and March 2014. The mean circulation and associated transports with uncertainties is determined from the cruise data using a unique configuration of an inverse box model formulated based on measured shipboard acoustic Doppler current profiler velocities. An intense inflow of 36 Sv is found entering the Solomon Sea in July–August 2012 that falls by 70% to 11 Sv in March 2014. Large differences are also found in the total transport partitioning through each of the major exit passages during each season. Different water masses are found in the WBC stream northeast of the Solomon Islands that are likely related to a northern stream of the South Equatorial Current. Within the Solomon Sea, isopycnal salinity gradients are gradually stronger than within the subtropical Pacific, likely induced by stronger diapycnal mixing processes. WBC pathways exhibit distinct water mass signatures in salinity, oxygen, and nutrients that can be traced across the Solomon Sea, associated with significant water mass modifications at the northern exit straits and south of the Woodlark Island.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-16-0107.s1.

Corresponding author address: Cyril Germineaud, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, 14 Avenue E. Belin, 31400 Toulouse, France. E-mail: cyril.germineaud@legos.obs-mip.fr

Abstract

The semienclosed Solomon Sea is the final passage in the equatorward transit of the South Pacific western boundary currents (WBCs) that play a key role in heat and mass budgets of the equatorial Pacific. The Solomon WBCs and their associated water properties are examined using data from two oceanographic cruises undertaken during the contrasting trade wind seasons: July 2012 and March 2014. The mean circulation and associated transports with uncertainties is determined from the cruise data using a unique configuration of an inverse box model formulated based on measured shipboard acoustic Doppler current profiler velocities. An intense inflow of 36 Sv is found entering the Solomon Sea in July–August 2012 that falls by 70% to 11 Sv in March 2014. Large differences are also found in the total transport partitioning through each of the major exit passages during each season. Different water masses are found in the WBC stream northeast of the Solomon Islands that are likely related to a northern stream of the South Equatorial Current. Within the Solomon Sea, isopycnal salinity gradients are gradually stronger than within the subtropical Pacific, likely induced by stronger diapycnal mixing processes. WBC pathways exhibit distinct water mass signatures in salinity, oxygen, and nutrients that can be traced across the Solomon Sea, associated with significant water mass modifications at the northern exit straits and south of the Woodlark Island.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-16-0107.s1.

Corresponding author address: Cyril Germineaud, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse, 14 Avenue E. Belin, 31400 Toulouse, France. E-mail: cyril.germineaud@legos.obs-mip.fr

Supplementary Materials

    • Supplemental Materials (PDF 7.75 MB)
Save
  • Bostock, H. C., B. N. Opdyke, and M. J. Williams, 2010: Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers. Deep-Sea Res. I, 57, 847859, doi:10.1016/j.dsr.2010.04.005.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., A. Ganachaud, Q.-P. Duong, W. S. Kessler, G. Eldin, and P. Dutrieux, 2011: Observed circulation in the Solomon Sea from SADCP data. Prog. Oceanogr., 88, 116130, doi:10.1016/j.pocean.2010.12.015.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., W. S. Kessler, and J. T. Sherman, 2012: Gliders measure western boundary current transport from the South Pacific to the equator. J. Phys. Oceanogr., 42, 20012013, doi:10.1175/JPO-D-12-022.1.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., M.-H. Radenac, S. Cravatte, G. Alory, L. Gourdeau, F. Léger, A. Singh, and D. Varillon, 2014: Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck Seas. J. Geophys. Res. Oceans, 119, 26422657, doi:10.1002/2013JC009733.

    • Search Google Scholar
    • Export Citation
  • Djath, B., J. Verron, A. Melet, L. Gourdeau, B. Barnier, and J.-M. Molines, 2014: Multiscale dynamical analysis of a high-resolution numerical model simulation of the Solomon Sea circulation. J. Geophys. Res. Oceans, 119, 62866304, doi:10.1002/2013JC009695.

    • Search Google Scholar
    • Export Citation
  • Donguy, J., and C. Henin, 1977: Origin of the surface tropical water in the Coral and Tasman Seas. Mar. Freshwater Res., 28, 321332, doi:10.1071/MF9770321.

    • Search Google Scholar
    • Export Citation
  • Fine, R. A., R. Lukas, F. M. Bingham, M. J. Warner, and R. H. Gammon, 1994: The western equatorial pacific: A water mass crossroads. J. Geophys. Res., 99, 25 06325 080, doi:10.1029/94JC02277.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Error budget of inverse box models: The North Atlantic. J. Atmos. Oceanic Technol., 20, 16411655, doi:10.1175/1520-0426(2003)020<1641:EBOIBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, doi:10.1038/35044048.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., L. Gourdeau, and W. Kessler, 2008: Bifurcation of the subtropical south equatorial current against New Caledonia in December 2004 from a hydrographic inverse box model. J. Phys. Oceanogr., 38, 20722084, doi:10.1175/2008JPO3901.1.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and Coauthors, 2014: The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE). J. Geophys. Res. Oceans, 119, 76607686, doi:10.1002/2013JC009678.

    • Search Google Scholar
    • Export Citation
  • Gasparin, F., A. Ganachaud, and C. Maes, 2011: A western boundary current east of New Caledonia: Observed characteristics. Deep-Sea Res. I, 58, 956969, doi:10.1016/j.dsr.2011.05.007.

    • Search Google Scholar
    • Export Citation
  • Gasparin, F., A. Ganachaud, C. Maes, F. Marin, and G. Eldin, 2012: Oceanic transports through the Solomon Sea: The bend of the New Guinea Coastal Undercurrent. Geophys. Res. Lett., 39, L15608, doi:10.1029/2012GL052575.

    • Search Google Scholar
    • Export Citation
  • Gasparin, F., C. Maes, J. Sudre, V. Garcon, and A. Ganachaud, 2014: Water mass analysis of the Coral Sea through an Optimum Multiparameter method. J. Geophys. Res. Oceans, 119, 72297244, doi:10.1002/2014JC010246.

    • Search Google Scholar
    • Export Citation
  • Grenier, M., S. Cravatte, B. Blanke, C. Menkes, A. Koch-Larrouy, F. Durand, A. Melet, and C. Jeandel, 2011: From the western boundary currents to the Pacific Equatorial Undercurrent: Modeled pathways and water mass evolutions. J. Geophys. Res., 116, C12044, doi:10.1029/2011JC007477.

    • Search Google Scholar
    • Export Citation
  • Grenier, M., C. Jeandel, F. Lacan, D. Vance, C. Venchiarutti, A. Cros, and S. Cravatte, 2013: From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth element concentration variations. J. Geophys. Res. Oceans, 118, 592618, doi:10.1029/2012JC008239.

    • Search Google Scholar
    • Export Citation
  • Grenier, M., C. Jeandel, and S. Cravatte, 2014: From the subtropics to the equator in the southwest Pacific: Continental material fluxes quantified using neodymium data along modeled thermocline water pathways. J. Geophys. Res. Oceans, 119, 39483966, doi:10.1002/2013JC009670.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate—Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386, doi:10.1016/S0074-6142(01)80129-7.

  • Hasson, A., T. Delcroix, and J. Boutin, 2013: Formation and variability of the South Pacific Sea surface salinity maximum in recent decades. J. Geophys. Res. Oceans, 118, 51095116, doi:10.1002/jgrc.20367.

    • Search Google Scholar
    • Export Citation
  • Hristova, H. G., and W. S. Kessler, 2012: Surface circulation in the Solomon Sea derived from Lagrangian drifter observations. J. Phys. Oceanogr., 42, 448458, doi:10.1175/JPO-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • Hristova, H. G., W. S. Kessler, J. C. McWilliams, and M. J. Molemaker, 2014: Mesoscale variability and its seasonality in the Solomon and Coral Seas. J. Geophys. Res. Oceans, 119, 46694687, doi:10.1002/2013JC009741.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and Coauthors, 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299308, doi:10.1038/nature14504.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and M. J. McPhaden, 1999: Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr., 29, 30733089, doi:10.1175/1520-0485(1999)029<3073:IPFFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., Y. Kashino, and Y. Kuroda, 2008: Variability and linkages of New Guinea coastal undercurrent and lower equatorial intermediate current. J. Phys. Oceanogr., 38, 17801793, doi:10.1175/2008JPO3916.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and L. Gourdeau, 2007: The annual cycle of circulation of the southwest subtropical Pacific, analyzed in an ocean GCM. J. Phys. Oceanogr., 37, 16101627, doi:10.1175/JPO3046.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1999: Interannual variability of the subsurface high salinity tongue south of the equator at 165°E. J. Phys. Oceanogr., 29, 20382049, doi:10.1175/1520-0485(1999)029<2038:IVOTSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and S. Cravatte, 2013a: ENSO and short-term variability of the south equatorial current entering the Coral Sea. J. Phys. Oceanogr., 43, 956969, doi:10.1175/JPO-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and S. Cravatte, 2013b: Mean circulation of the Coral Sea. J. Geophys. Res. Oceans, 118, 63856410, doi:10.1002/2013JC009117.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26, 17431746, doi:10.1029/1999GL900352.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and I. Fukumori, 2003: Interannual-to-decadal variations of tropical-subtropical exchange in the Pacific Ocean: Boundary versus interior pycnocline transports. J. Climate, 16, 40224042, doi:10.1175/1520-0442(2003)016<4022:IVOTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindstrom, E., R. Lukas, R. A. Fine, J. S. Godfrey, G. Meyers, and M. Tsuchiya, 1987: The Western Equatorial Pacific Ocean Circulation Study. Nature, 330, 533537, doi:10.1038/330533a0.

    • Search Google Scholar
    • Export Citation
  • Lindstrom, E., J. Butt, R. Lukas, and S. Godfrey, 1990: The flow through Vitiaz Strait and St. George’s Channel, Papua New Guinea. The Physical Oceanography of Sea Straits, L. J. Pratt, Ed., NATO ASI Series, Vol. 318, Springer, 171–189, doi:10.1007/978-94-009-0677-8_7.

  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382, 436439, doi:10.1038/382436a0.

    • Search Google Scholar
    • Export Citation
  • McCartney, M., 1977: Subantarctic mode water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. Angel, Ed., Pergamon Press, 103–119.

  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, doi:10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melet, A., L. Gourdeau, W. S. Kessler, J. Verron, and J.-M. Molines, 2010a: Thermocline circulation in the Solomon Sea: A modeling study. J. Phys. Oceanogr., 40, 13021319, doi:10.1175/2009JPO4264.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., L. Gourdeau, and J. Verron, 2010b: Variability in Solomon Sea circulation derived from altimeter sea level data. Ocean Dyn., 60, 883900, doi:10.1007/s10236-010-0302-6.

    • Search Google Scholar
    • Export Citation
  • Melet, A., J. Verron, L. Gourdeau, and A. Koch-Larrouy, 2011: Equatorward pathways of Solomon sea water masses and their modifications. J. Phys. Oceanogr., 41, 810826, doi:10.1175/2010JPO4559.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., L. Gourdeau, J. Verron, and B. Djath, 2013: Solomon Sea circulation and water mass modifications: Response at ENSO timescales. Ocean Dyn., 63, 119, doi:10.1007/s10236-012-0582-0.

    • Search Google Scholar
    • Export Citation
  • Murray, S., E. Lindstrom, J. Kindle, and E. Weeks, 1995: Transport through the Vitiaz Strait. WOCE Notes, Vol. 7, No. 1, 21–23.

  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, doi:10.1175/JPO-D-12-0207.1.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and E. J. Lindstrom, 2002: A climatological interpretation of the circulation in the western South Pacific. J. Phys. Oceanogr., 32, 24922508, doi:10.1175/1520-0485-32.9.2492.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and E. J. Lindstrom, 2004: Northward intrusion of Antarctic Intermediate Water in the western Pacific. J. Phys. Oceanogr., 34, 21042118, doi:10.1175/1520-0485(2004)034<2104:NIOAIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, I. Fukumori, R. A. Fine, and E. J. Lindstrom, 2008: Subduction of South Pacific waters. Geophys. Res. Lett., 35, L02610, doi:10.1029/2007GL032605.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, I. Fukumori, R. A. Fine, and E. J. Lindstrom, 2009: Origin and pathway of equatorial 13°C water in the Pacific identified by a simulated passive tracer and its adjoint. J. Phys. Oceanogr., 39, 18361853, doi:10.1175/2009JPO4045.1.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and R. A. Fine, 2013: Subduction of South Pacific tropical water and its equatorward pathways as shown by a simulated passive tracer. J. Phys. Oceanogr., 43, 15511565, doi:10.1175/JPO-D-12-0180.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and B. Cornuelle, 1992: The subtropical mode waters of the South Pacific Ocean. J. Phys. Oceanogr., 22, 11781187, doi:10.1175/1520-0485(1992)022<1178:TSMWOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, doi:10.1002/jgrc.20122.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. Rintoul, 2000: Circulation and water masses of the southwest Pacific: WOCE section P11, Papua New Guinea to Tasmania. J. Mar. Res., 58, 223268, doi:10.1357/002224000321511151.

    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and D. Hao, 1989: Water masses in the thermocline of the Coral Sea. Deep-Sea Res., 36A, 15031514, doi:10.1016/0198-0149(89)90054-X.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1981: The origin of the pacific equatorial 13°C water. J. Phys. Oceanogr., 11, 794812, doi:10.1175/1520-0485(1981)011<0794:TOOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1991: Flow path of the Antarctic Intermediate Water in the western equatorial South Pacific Ocean. Deep-Sea Res., 38A, S273S279, doi:10.1016/S0198-0149(12)80013-6.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., R. Lukas, R. A. Fine, E. Firing, and E. Lindstrom, 1989: Source waters of the Pacific Equatorial Undercurrent. Prog. Oceanogr., 23, 101147, doi:10.1016/0079-6611(89)90012-8.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Wyrtki, K., 1962: The subsurface water masses in the western South Pacific Ocean. Mar. Freshwater Res., 13, 1847, doi:10.1071/MF9620018.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., G. Siedler, A. Ishida, J. Holfort, Y. Kashino, Y. Kuroda, T. Miyama, and T. J. Müller, 2005: Pathways and variability of the Antarctic Intermediate Water in the western equatorial Pacific Ocean. Prog. Oceanogr., 67, 245281, doi:10.1016/j.pocean.2005.05.003.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N., D. Roemmich, and S. Gille, 2013: The mean and the time variability of the shallow meridional overturning circulation in the tropical South Pacific Ocean. J. Climate, 26, 40694087, doi:10.1175/JCLI-D-12-00120.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1091 552 29
PDF Downloads 428 53 7