Evolution of Directional Wave Spectra in the Marginal Ice Zone: A New Model Tested with Legacy Data

Vernon A. Squire Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand

Search for other papers by Vernon A. Squire in
Current site
Google Scholar
PubMed
Close
and
Fabien Montiel Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand

Search for other papers by Fabien Montiel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Field experimental data from a 1980s program in the Greenland Sea investigating the evolution of directional wave spectra in the marginal ice zone are reanalyzed and compared with the predictions of a new, phase-resolving, three-dimensional model describing the two-dimensional scattering of the waves by the vast number of ice floes that are normally present. The model is augmented with a dissipative term to account for the nonconservative processes affecting wave propagation. Observations reported in the experimental study are used to reproduce the ice conditions and wave forcing during the experiments. It is found that scattering alone underestimates the attenuation experienced by the waves during their passage through the ice field. With dissipation, however, the model can replicate the observed attenuation for most frequencies in the swell regime. Model predictions and observations of directional spreading are in agreement for short to midrange wave periods, where the wave field quickly becomes isotropic. For larger wave periods, little spreading can be seen in the model predictions, in contrast to the isotropic or near-isotropic seas reported in the experimental study. The discrepancy is conjectured to be a consequence of the inaccurate characterization of the ice conditions in the model and experimental errors.

Denotes Open Access content.

Corresponding author address: Vernon A. Squire, Dept. of Mathematics and Statistics, Science III Building, 730 Cumberland Street, University of Otago, Dunedin 9016, New Zealand. E-mail: vernon.squire@otago.ac.nz

Abstract

Field experimental data from a 1980s program in the Greenland Sea investigating the evolution of directional wave spectra in the marginal ice zone are reanalyzed and compared with the predictions of a new, phase-resolving, three-dimensional model describing the two-dimensional scattering of the waves by the vast number of ice floes that are normally present. The model is augmented with a dissipative term to account for the nonconservative processes affecting wave propagation. Observations reported in the experimental study are used to reproduce the ice conditions and wave forcing during the experiments. It is found that scattering alone underestimates the attenuation experienced by the waves during their passage through the ice field. With dissipation, however, the model can replicate the observed attenuation for most frequencies in the swell regime. Model predictions and observations of directional spreading are in agreement for short to midrange wave periods, where the wave field quickly becomes isotropic. For larger wave periods, little spreading can be seen in the model predictions, in contrast to the isotropic or near-isotropic seas reported in the experimental study. The discrepancy is conjectured to be a consequence of the inaccurate characterization of the ice conditions in the model and experimental errors.

Denotes Open Access content.

Corresponding author address: Vernon A. Squire, Dept. of Mathematics and Statistics, Science III Building, 730 Cumberland Street, University of Otago, Dunedin 9016, New Zealand. E-mail: vernon.squire@otago.ac.nz
Save
  • Ardhuin, F., F. Collard, B. Chapron, F. Girard-Ardhuin, G. Guitton, A. Mouche, and J. E. Stopa, 2015: Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophys. Res. Lett., 42, 2317–2325, doi:10.1002/2014GL062940.

    • Search Google Scholar
    • Export Citation
  • Bennetts, L. G., M. A. Peter, V. A. Squire, and M. H. Meylan, 2010: A three-dimensional model of wave attenuation in the marginal ice zone. J. Geophys. Res., 115, C12043, doi:10.1029/2009JC005982.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., J.-R. Bidlot, J. Gemmrich, S. Lehner, A. Pleskachevsky, and W. Rosenthal, 2016: Wave observation in the marginal ice zone with the TerraSAR-X satellite. Ocean Dyn., 66, 839–852, doi:10.1007/s10236-016-0957-8.

    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., J. E. Overland, and D. K. Perovich, 2013: The Arctic shifts to a new normal. Phys. Today, 66, 35–40, doi:10.1063/PT.3.2147.

    • Search Google Scholar
    • Export Citation
  • Kohout, A. L., M. J. M. Williams, S. M. Dean, and M. H. Meylan, 2014: Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509, 604–607, doi:10.1038/nature13262.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Liu, A. K., P. W. Vachon, and C. Y. Peng, 1991: Observation of wave refraction at an ice edge by synthetic aperture radar. J. Geophys. Res., 96, 4803–4808, doi:10.1029/90JC02546.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra, Prentice-Hall, 111–136.

  • Love, A. E. H., 1944: A Treatise on the Mathematical Theory of Elasticity. Dover, 643 pp.

  • Martin, S., P. Kauffman, and C. Parkinson, 1983: The movement and decay of ice edge bands in the winter Bering Sea. J. Geophys. Res., 88, 2803–2812, doi:10.1029/JC088iC05p02803.

    • Search Google Scholar
    • Export Citation
  • Masson, D., and P. H. LeBlond, 1989: Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech., 202, 43–81, doi:10.1017/S0022112089001096.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., D. Gallaher, and G. G. Campbell, 2013: New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere, 7, 699–705, doi:10.5194/tc-7-699-2013.

    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., and D. Masson, 2006: A linear Boltzmann equation to model wave scattering in the marginal ice zone. Ocean Modell., 11, 417–427, doi:10.1016/j.ocemod.2004.12.008.

    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., V. A. Squire, and C. Fox, 1997: Toward realism in modelling ocean wave behaviour in marginal ice zones. J. Geophys. Res., 102, 22 981–22 991, doi:10.1029/97JC01453.

    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., L. G. Bennetts, and A. L. Kohout, 2014: In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophys. Res. Lett., 41, 5046–5051, doi:10.1002/2014GL060809.

    • Search Google Scholar
    • Export Citation
  • Montiel, F., V. A. Squire, and L. G. Bennetts, 2016: Attenuation and directional spreading of ocean wave spectra by large random arrays of ice floes. J. Fluid Mech., 790, 492–522, doi:10.1017/jfm.2016.21.

    • Search Google Scholar
    • Export Citation
  • Mosig, J. E. M., F. Montiel, and V. A. Squire, 2015: Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered sea. J. Geophys. Res. Oceans, 120, 6072–6090, doi:10.1002/2015JC010881.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., and Y. Hu, 1996: Air–ice–ocean momentum exchange. Part I: Energy transfer between waves and ice floes. J. Phys. Oceanogr., 26, 1705–1720, doi:10.1175/1520-0485(1996)026<1705:AMEPTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., and Y. Hu, 1997: Air–ice–ocean momentum exchange. Part II: Ice drift. J. Phys. Oceanogr., 27, 1976–1996, doi:10.1175/1520-0485(1997)027<1976:AIOMEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, N. J., and S. C. Palmer, 1990: A modal analysis of a rectangular plate floating on an incompressible liquid. J. Sound Vib., 142, 453–460, doi:10.1016/0022-460X(90)90661-I.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., and A. S. Thorndike, 1984: Measuring the sea ice floe size distribution. J. Geophys. Res., 89, 6477–6486, doi:10.1029/JC089iC04p06477.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, and M. H. England, 2013: Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett., 40, 3643–3648, doi:10.1002/grl.50715.

    • Search Google Scholar
    • Export Citation
  • Squire, V. A., 2007: Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol., 49, 110–133, doi:10.1016/j.coldregions.2007.04.007.

    • Search Google Scholar
    • Export Citation
  • Squire, V. A., 2011: Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Proc. Roy. Soc. London, A369, 2813–2831, doi:10.1098/rsta.2011.0093.

    • Search Google Scholar
    • Export Citation
  • Squire, V. A., and S. C. Moore, 1980: Direct measurement of the attenuation of ocean waves by pack ice. Nature, 283, 365–368, doi:10.1038/283365a0.

    • Search Google Scholar
    • Export Citation
  • Squire, V. A., J. P. Dugan, P. Wadhams, P. J. Rottier, and A. K. Liu, 1995: Of ocean waves and sea ice. Annu. Rev. Fluid Mech., 27, 115–168, doi:10.1146/annurev.fl.27.010195.000555.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and J.-C. Gascard, 2016: Airborne remote sensing of ocean wave directional wavenumber spectra in the marginal ice zone. Geophys. Res. Lett., 43, 5151–5159, doi:10.1002/2016GL067713.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., and W. E. Rogers, 2014: Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett., 41, 3136–3140, doi:10.1002/2014GL059983.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., and Coauthors, 2016: Emerging trends in the sea state of the Beaufort and Chukchi Seas. Ocean Modell., 105, 1–12, doi:10.1016/j.ocemod.2016.02.009.

    • Search Google Scholar
    • Export Citation
  • Timco, G. W., and W. F. Weeks, 2010: A review of the engineering properties of sea ice. Cold Reg. Sci. Technol., 60, 107–129, doi:10.1016/j.coldregions.2009.10.003.

    • Search Google Scholar
    • Export Citation
  • Toyota, T., S. Takatsuji, and M. Nakayama, 2006: Characteristics of sea ice floe size distribution in the seasonal ice zone. Geophys. Res. Lett., 33, L02616, doi:10.1029/2005GL024556.

    • Search Google Scholar
    • Export Citation
  • Toyota, T., C. Haas, and T. Tamura, 2011: Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter. Deep-Sea Res. II, 58, 1182–1193, doi:10.1016/j.dsr2.2010.10.034.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 1983: A mechanism for the formation of ice edge bands. J. Geophys. Res., 88, 2813–2818, doi:10.1029/JC088iC05p02813.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., V. A. Squire, J. A. Ewing, and R. W. Pascal, 1986: The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr., 16, 358–376, doi:10.1175/1520-0485(1986)016<0358:TEOTMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., V. A. Squire, D. J. Goodman, A. M. Cowan, and S. C. Moore, 1988: The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res., 93, 6799–6818, doi:10.1029/JC093iC06p06799.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., N. Hughes, and J. Rodrigues, 2011: Arctic sea ice thickness characteristics in winter 2004 and 2007 from submarine sonar transects. J. Geophys. Res., 116, C00E02, doi:10.1029/2011JC006982.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier, 287 pp.

  • Young, I. R., S. Zieger, and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451–455, doi:10.1126/science.1197219.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1239 609 42
PDF Downloads 297 49 12