Opposite Variability of Indonesian Throughflow and South China Sea Throughflow in the Sulawesi Sea

Jun Wei Laboratory for Climate and Ocean-Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

Search for other papers by Jun Wei in
Current site
Google Scholar
PubMed
Close
,
M. T. Li Laboratory for Climate and Ocean-Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

Search for other papers by M. T. Li in
Current site
Google Scholar
PubMed
Close
,
P. Malanotte-Rizzoli Department of Earth, Planetary and Atmospheric Sciences, Massachusetts Institute of Technology, Boston, Massachusetts

Search for other papers by P. Malanotte-Rizzoli in
Current site
Google Scholar
PubMed
Close
,
A. L. Gordon Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by A. L. Gordon in
Current site
Google Scholar
PubMed
Close
, and
D. X. Wang South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by D. X. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on a high-resolution (0.1° × 0.1°) regional ocean model covering the entire northern Pacific, this study investigated the seasonal and interannual variability of the Indonesian Throughflow (ITF) and the South China Sea Throughflow (SCSTF) as well as their interactions in the Sulawesi Sea. The model efficiency in simulating the general circulations of the western Pacific boundary currents and the ITF/SCSTF through the major Indonesian seas/straits was first validated against the International Nusantara Stratification and Transport (INSTANT) data, the OFES reanalysis, and results from previous studies. The model simulations of 2004–12 were then analyzed, corresponding to the period of the INSTANT program. The results showed that, derived from the North Equatorial Current (NEC)–Mindanao Current (MC)–Kuroshio variability, the Luzon–Mindoro–Sibutu flow and the Mindanao–Sulawesi flow demonstrate opposite variability before flowing into the Sulawesi Sea. Although the total transport of the Mindanao–Sulawesi flow is much larger than that of the Luzon–Mindoro–Sibutu flow, their variability amplitudes are comparable but out of phase and therefore counteract each other in the Sulawesi Sea. Budget analysis of the two major inflows revealed that the Luzon–Mindoro–Sibutu flow is enhanced southward during winter months and El Niño years, when more Kuroshio water intrudes into the SCS. This flow brings more buoyant SCS water into the western Sulawesi Sea through the Sibutu Strait, building up a west-to-east pressure head anomaly against the Mindanao–Sulawesi inflow and therefore resulting in a reduced outflow into the Makassar Strait. The situation is reversed in the summer months and La Niña years, and this process is shown to be more crucially important to modulate the Makassar ITF’s interannual variability than the Luzon–Karimata flow that is primarily driven by seasonal monsoons.

Lamont-Doherty Earth Observatory contribution number 8043.

Corresponding author address: Dr. Jun Wei, Laboratory for Climate and Ocean-Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China. E-mail: junwe@pku.edu.cn

Abstract

Based on a high-resolution (0.1° × 0.1°) regional ocean model covering the entire northern Pacific, this study investigated the seasonal and interannual variability of the Indonesian Throughflow (ITF) and the South China Sea Throughflow (SCSTF) as well as their interactions in the Sulawesi Sea. The model efficiency in simulating the general circulations of the western Pacific boundary currents and the ITF/SCSTF through the major Indonesian seas/straits was first validated against the International Nusantara Stratification and Transport (INSTANT) data, the OFES reanalysis, and results from previous studies. The model simulations of 2004–12 were then analyzed, corresponding to the period of the INSTANT program. The results showed that, derived from the North Equatorial Current (NEC)–Mindanao Current (MC)–Kuroshio variability, the Luzon–Mindoro–Sibutu flow and the Mindanao–Sulawesi flow demonstrate opposite variability before flowing into the Sulawesi Sea. Although the total transport of the Mindanao–Sulawesi flow is much larger than that of the Luzon–Mindoro–Sibutu flow, their variability amplitudes are comparable but out of phase and therefore counteract each other in the Sulawesi Sea. Budget analysis of the two major inflows revealed that the Luzon–Mindoro–Sibutu flow is enhanced southward during winter months and El Niño years, when more Kuroshio water intrudes into the SCS. This flow brings more buoyant SCS water into the western Sulawesi Sea through the Sibutu Strait, building up a west-to-east pressure head anomaly against the Mindanao–Sulawesi inflow and therefore resulting in a reduced outflow into the Makassar Strait. The situation is reversed in the summer months and La Niña years, and this process is shown to be more crucially important to modulate the Makassar ITF’s interannual variability than the Luzon–Karimata flow that is primarily driven by seasonal monsoons.

Lamont-Doherty Earth Observatory contribution number 8043.

Corresponding author address: Dr. Jun Wei, Laboratory for Climate and Ocean-Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China. E-mail: junwe@pku.edu.cn
Save
  • Arruda, W. Z., and D. Nof, 2003: The Mindanao and Halmahera eddies—Twin eddies induced by nonlinearities. J. Phys. Oceanogr., 33, 28152830, doi:10.1175/1520-0485(2003)033<2815:TMAHEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berntsen, J., and L.-Y. Oey, 2010: Estimation of the internal pressure gradient in σ-coordinate ocean models: Comparison of second-, fourth-, and sixth-order schemes. Ocean Dyn., 60, 317–330, doi:10.1007/s10236-009-0245-y.

    • Search Google Scholar
    • Export Citation
  • Burnett, W. H., V. M. Kamenkovich, D. A. Jaffe, A. L. Gordon, and G. L. Mellor, 2000a: Dynamical balance in the Indonesian seas circulation. Geophys. Res. Lett., 27, 27052708, doi:10.1029/2000GL011494.

    • Search Google Scholar
    • Export Citation
  • Burnett, W. H., V. M. Kamenkovich, G. L. Mellor, and A. L. Gordon, 2000b: The influence of the pressure head on the Indonesian seas circulation. Geophys. Res. Lett., 27, 22732276, doi:10.1029/1999GL010918.

    • Search Google Scholar
    • Export Citation
  • Burnett, W. H., V. M. Kamenkovich, A. L. Gordon, and G. L. Mellor, 2003: The Pacific/Indian Ocean pressure difference and its influence on the Indonesian seas circulation: Part I—The study with specified total transports. J. Mar. Res., 61, 577611, doi:10.1357/002224003771815963.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, and X. Cao, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311326, doi:10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: The oceanic meridional overturning circulation, mixing, bottom water formation, and heat transport. Nature, 408, 453457, doi:10.1038/35044048.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the World Ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112, doi:10.1080/03091928908208894.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, doi:10.1029/JC091iC04p05037.

  • Gordon, A. L., 2001: Interocean exchange. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 303–314.

  • Gordon, A. L., C. F. Giulivi, and A. G. Ilahude, 2003: Deep topographic barriers within the Indonesian seas. Deep-Sea Res. II, 50, 2205–2228, doi:10.1016/S0967-0645(03)00053-5.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, A. Ffield, B. A. Huber, W. Pranowo, and S. Wirasantosa, 2008: Makassar Strait Throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, doi:10.1029/2008GL036372.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Coauthors, 2010: The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115–128, doi:10.1016/j.dynatmoce.2009.12.002.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi, 2012: South China Sea Throughflow impact on the Indonesian Throughflow. Geophys. Res. Lett., 39, L11602, doi:10.1029/2012GL052021.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., P. Flament, C. Villanoy, and L. Centurioni, 2014: The nascent Kuroshio of Lamon Bay. J. Geophys. Res. Oceans, 119, 42514263, doi:10.1002/2014JC009882.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., and J. S. Godfrey, 1993: The role of the Indonesian Throughflow in a global GCM. J. Phys. Oceanogr., 23, 10571086, doi:10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, D., W. Cai, A. Ganachaud, W. S. Kessler, and J. Sprintall, 2015: Introduction to special section on western Pacific Ocean circulation and climate. J. Geophys. Res. Oceans, 120, 3175–3176, doi:10.1002/2015JC010856.

    • Search Google Scholar
    • Export Citation
  • Hu, S., D. Hu, C. Guan, F. Wang, L. Zhang, F. Wang, and Q. Wang, 2016: Interannual variability of the Mindanao Current/Undercurrent in direct observations and numerical simulations. J. Phys. Oceanogr., 46, 483499, doi:10.1175/JPO-D-15-0092.1.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H., E. Metzger, J. Sprintall, S. Riedlinger, R. Arnone, and T. Shinoda, 2011: Circulation in the Philippine Archipelago simulated by 1/12° and 1/25° global HYCOM and EAS NCOM. Oceanography, 24, 2847, doi:10.5670/oceanog.2011.02.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, V. M., H. W. Burnett, A. L. Gordon, and G. L. Mellor, 2003: The Pacific/Indian Ocean pressure difference and its influence on the Indonesian seas circulation: Part II—The study with specified sea-surface heights. J. Mar. Res., 61, 613634, doi:10.1357/002224003771815972.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, V. M., K. T. A. O’Driscoll, and D. A. Nechaev, 2009: Dynamics of the Indonesian seas circulation. Part II—The role of pressure head. J. Mar. Res., 67, 159–184, doi:10.1357/002224009789051209.

    • Search Google Scholar
    • Export Citation
  • Kim, Y. Y., T. Qu, T. Jensen, T. Miyama, H. Mitsudera, H.-W. Kang, and A. Ishida, 2004: Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J. Geophys. Res., 109, C03040, doi:10.1029/2003JC002013.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and Coauthors, 2015: The Kuroshio and Luzon Undercurrent east of Luzon Island. Oceanography, 28, 5463, doi:10.5670/oceanog.2015.81.

    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., R. Huang, D. Wang, Q. Xie, and Q. Huang, 2006: Interplay between the Indonesian Throughflow and the South China Sea Throughflow. Chin. Sci. Bull., 51, 5058, doi:10.1007/s11434-006-9050-x.

    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., M. Feng, and D. Wang, 2011: ENSO-induced interannual variability in the southeastern South China Sea. J. Oceanogr., 67, 127133, doi:10.1007/s10872-011-0002-y.

    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., R. X. Huang, and D. X. Wang, 2012: Implication of the South China Sea Throughflow for the interannual variability of the regional upper-ocean heat content. Adv. Atmos. Sci., 29, 5462, doi:10.1007/s00376-011-0068-x.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and T. Yamagata, 1993: Simulated seasonal circulation in the Indonesian seas. J. Geophys. Res., 98, 12 50112 509, doi:10.1029/93JC01025.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and H. E. Hurlburt, 1996: Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101, 12 33112 352, doi:10.1029/95JC03861.

    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., and P. Chen, 1992a: A model simulation of circulation in the northeast Atlantic shelves and seas. J. Geophys. Res., 97, 20 08720 115, doi:10.1029/92JC01990.

    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., and P. Chen, 1992b: A nested-grid ocean model: With application to the simulation of meanders and eddies in the Norwegian Coastal Current. J. Geophys. Res., 97, 20 06320 086, doi:10.1029/92JC01991.

    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., T. Ezer, D. P. Wang, S. J. Fan, and X. Q. Yin, 2006: Loop Current warming by Hurricane Wilma. Geophys. Res. Lett., 33, L08613, doi:10.1029/2006GL025873.

    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., T. Ezer, D. P. Wang, X. Q. Yin, and S. J. Fan, 2007: Hurricane-induced motions and interaction with ocean currents. Cont. Shelf Res., 27, 12491263, doi:10.1016/j.csr.2007.01.008.

    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., Y. L. Chang, Y. C. Lin, M. C. Chang, F. H. Xu, and H. F. Lu, 2013: ATOP—The Advanced Taiwan Ocean Prediction System based on the mpiPOM Part 1: Model descriptions, analyses and results. Terr. Atmos. Oceanic Sci. J., 24, 137158, doi:10.3319/TAO.2012.09.12.01(Oc).

    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., Y. L. Chang, Y. C. Lin, M. C. Chang, S. Varlamov, and Y. Miyazawa, 2014: Cross flows in the Taiwan Strait in winter. J. Phys. Oceanogr., 44, 801817, doi:10.1175/JPO-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
  • Pujiana, K., A. L. Gordon, and J. Sprintall, 2013: Intraseasonal Kelvin wave in Makassar Strait. J. Geophys. Res. Oceans, 118, 20232034, doi:10.1002/jgrc.20069.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, doi:10.1029/95JC03204.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 25252538, doi:10.1175/2010JPO4462.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, I. Cerovecki, B. D. Cornuelle, S. Chen, M. C. Schönau, J. L. McClean, and G. Gopalakrishnan, 2015: The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao Currents (OKMC) project. Oceanography, 28, 2433, doi:10.5670/oceanog.2015.78.

    • Search Google Scholar
    • Export Citation
  • Qin, H., R. X. Huang, W. Wang, and H. Xue, 2016: Regulation of South China Sea throughflow by pressure difference. J. Geophys. Res. Oceans, 121, 40774096, doi:10.1002/2015JC011177.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and Y. T. Song, 2009: Mindoro Strait and Sibutu Passage transports estimated from satellite data. Geophys. Res. Lett., 36, L09601, doi:10.1029/2009GL037314.

    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mistudera, and T. Yamagata, 1998: On the western boundary currents in the Philippine Sea. J. Geophys. Res., 103, 75377548, doi:10.1029/98JC00263.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 36443657, doi:10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, G. Meyers, A. Ishida, and D. Wang, 2005: Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys. Res. Lett., 32, L24609, doi:10.1029/2005GL024698.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. T. Song, and T. Ymagata, 2009: An introduction to the South China Sea Throughflow: Its dynamics, variability, and application for climate. Dyn. Atmos. Oceans, 47, 314, doi:10.1016/j.dynatmoce.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., S. Jan, and C. M. Lee, 2015: A new look at circulation in the western North Pacific. Oceanography, 28, 1623, doi:10.5670/oceanog.2015.77.

    • Search Google Scholar
    • Export Citation
  • Schönau, M. C., and D. L. Rudnick, 2015: Glider observations of the North Equatorial Current in the western tropical Pacific. J. Geophys. Res. Oceans, 120, 3586–3605, doi:10.1002/2014JC010595.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1988: A simulation of the global circulation with resolved eddies. J. Geophys. Res., 93, 15 50215 522, doi:10.1029/JC093iC12p15502.

    • Search Google Scholar
    • Export Citation
  • Sheremet, V. A., 2001: Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr., 31, 12471259, doi:10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and A. Revelard, 2014: The Indonesian Throughflow response to Indo-Pacific climate variability. J. Geophys. Res. Oceans, 119, 11611175, doi:10.1002/2013JC009533.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, R. Murtugudde, and R. D. Susanto, 2000: A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res., 105, 17 21717 230, doi:10.1029/2000JC900065.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and Coauthors, 2004: INSTANT: A new international array to measure the Indonesian Throughflow. Eos, Trans. Amer. Geophys. Union, 85, 369–376, doi:10.1029/2004EO390002.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., G. Siedler, and H. Mercier, 2013: Inter-ocean and interbasin exchanges. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler, S. M. Griffies, J. Gould, and J. A. Church, Eds., 493–552.

  • Sprintall, J., A. L. Gordon, A. Koch-Larrouy, T. Lee, J. T. Potemra, K. Pujiana, and S. E. Wijffels, 2014: The Indonesian seas and their impact on the coupled ocean–climate system. Nat. Geosci., 7, 487492, doi:10.1038/ngeo2188.

    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, X. Liang, D. Hu, F. Wang, and T. Qu, 2006: The observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, doi:10.1029/2006GL026272.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, and T. Yamagata, 2007: Dramatic impact of the South China Sea on the Indonesian Throughflow. Geophys. Res. Lett., 34, L12612, doi:10.1029/2007GL030420.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, Y. Masumoto, and T. Yamagata, 2009: Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dyn. Atmos. Oceans, 47, 7385, doi:10.1016/j.dynatmoce.2008.09.001.

    • Search Google Scholar
    • Export Citation
  • Tranchant, B., G. Reffray, E. Greiner, D. Nugroho, A. Koch-Larrouy, and P. Gaspar, 2016: Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas (NEMO2.3/INDO12)—Part 1: Ocean physics. Geosci. Model Dev., 9, 10371064, doi:10.5194/gmdd-8-6611-2015.

    • Search Google Scholar
    • Export Citation
  • Van Sebille, E, J. Sprintall, F. U. Schwarzkopf, A. Sen Gupta, A. Santoso, M. H. England, A. Biastoch, and C. W. Böning, 2014: Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. J. Geophys. Res. Oceans, 119, 13651382, doi:10.1002/2013JC009525.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2012: Nonlinear dynamics of two western boundary currents colliding at a gap. J. Phys. Oceanogr., 42, 20302040, doi:10.1175/JPO-D-12-05.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2014: Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. J. Phys. Oceanogr., 44, 18731885, doi:10.1175/JPO-D-13-0234.1.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical Oceanography of the Southeast Asian Waters. NAGA Rep., Vol. 2, Scripps Institute of Oceanography, 195 pp.

  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, doi:10.1126/science.181.4096.262.

  • Xu, D., and P. Malanotte-Rizzoli, 2013: The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian Through flow (ITF): An ocean model study. Dyn. Atmos. Oceans, 63, 103130, doi:10.1016/j.dynatmoce.2013.05.002.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., and T. Qu, 2004: Seasonal variability of the large-scale currents near the coast of the Philippines. J. Phys. Oceanogr., 34, 844855, doi:10.1175/1520-0485(2004)034<0844:SVOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zeng, L., W. T. Liu, H. Xue, P. Xiu, and D. Wang, 2014: Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data. J. Geophys. Res. Oceans, 119, 8296–8314, doi:10.1002/2014JC010108.

    • Search Google Scholar
    • Export Citation
  • Zhang, L. L., D. X. Hu, S. Hu, F. Wang, F. Wang, and D. Yuan, 2014: Mindanao Current/Undercurrent measured by a subsurface mooring. J. Geophys. Res. Oceans, 119, 36173628, doi:10.1002/2013JC009693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1862 965 92
PDF Downloads 648 142 30