The Impact of Observed Variations in the Shear-to-Strain Ratio of Internal Waves on Inferred Turbulent Diffusivities

Brian S. Chinn Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Brian S. Chinn in
Current site
Google Scholar
PubMed
Close
,
James B. Girton Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by James B. Girton in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. Alford Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The most comprehensive studies of the spatial and temporal scales of diffusivity rely on internal wave parameterizations that require knowledge of finescale shear and strain. Studies lacking either shear or strain measurements have to assume a constant ratio between shear and strain (Rω). Data from 14 moorings collected during five field programs are examined to determine the spatial and temporal patterns in Rω and the influence of these patterns on parameterized diffusivity. Time-mean Rω ranges from 1 to 10, with changes of order 10 observed over a broad range of scales. Temporal variability in Rω is observed at daily, weekly, and monthly scales. Observed changes in Rω could produce a 2–3 times change in parameterized diffusivity. Vertical profiles of Rω, Eshear, and Estrain (shear or strain variance relative to Garret–Munk) reveal that both local topographic properties and wind variability impact the internal wave field. Time series of Rω from each mooring have strong correlations to either shear or strain, often only at a specific range of vertical wavenumbers. Sites fall into two categories, in which Rω variability is dominated by either shear or strain. Linear fits to the dominant property (i.e., shear or strain) can be used to estimate a time series of Rω that has an RMS error that is 30% less than the RMS error from assuming Rω = 3. Shear and strain level vary in concert, as predicted by the Garret–Munk model, at high Eshear values. However, at Eshear < 5, strain variations are 3 times weaker than shear.

Denotes Open Access content.

Corresponding author address: Brian Chinn, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Box 355640, Seattle, WA 98105-6698. E-mail: bchinn@u.washington.edu

Abstract

The most comprehensive studies of the spatial and temporal scales of diffusivity rely on internal wave parameterizations that require knowledge of finescale shear and strain. Studies lacking either shear or strain measurements have to assume a constant ratio between shear and strain (Rω). Data from 14 moorings collected during five field programs are examined to determine the spatial and temporal patterns in Rω and the influence of these patterns on parameterized diffusivity. Time-mean Rω ranges from 1 to 10, with changes of order 10 observed over a broad range of scales. Temporal variability in Rω is observed at daily, weekly, and monthly scales. Observed changes in Rω could produce a 2–3 times change in parameterized diffusivity. Vertical profiles of Rω, Eshear, and Estrain (shear or strain variance relative to Garret–Munk) reveal that both local topographic properties and wind variability impact the internal wave field. Time series of Rω from each mooring have strong correlations to either shear or strain, often only at a specific range of vertical wavenumbers. Sites fall into two categories, in which Rω variability is dominated by either shear or strain. Linear fits to the dominant property (i.e., shear or strain) can be used to estimate a time series of Rω that has an RMS error that is 30% less than the RMS error from assuming Rω = 3. Shear and strain level vary in concert, as predicted by the Garret–Munk model, at high Eshear values. However, at Eshear < 5, strain variations are 3 times weaker than shear.

Denotes Open Access content.

Corresponding author address: Brian Chinn, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Box 355640, Seattle, WA 98105-6698. E-mail: bchinn@u.washington.edu
Save
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, doi:10.1175/2010JPO4502.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Search Google Scholar
    • Export Citation
  • Chinn, B., M. H. Alford, and J. B. Girton, 2012: Observations of internal waves and parametric subharmonic instability in the Philippines archipelago. J. Geophys. Res., 117, C05019, doi:10.1029/2011JC007392.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Ferron, B. H., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Girton, J. B., B. Chinn, and M. H. Alford, 2011: Internal wave climates of the Philippine Seas. Oceanography, 24, 100111, doi:10.5670/oceanog.2011.07.

    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M., and T. Sanford, 1980: Signatures of mixing from the Bermuda Slope, the Sargasso Sea and the Gulf Stream. J. Phys. Oceanogr., 10, 105127, doi:10.1175/1520-0485(1980)010,0105:SOMFTB.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M., and E. Kunze, 1991: Shear and strain in Santa Monica Basin. J. Geophys. Res., 96, 16 70916 719, doi:10.1029/91JC01385.

  • Gregg, M., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., M. H. Alford, G. S. Carter, M. C. Gregg, R. Lien, D. J. Wain, and Z. Zhao, 2014: Transition from partly standing to progressive internal tides in Monterey Submarine Canyon. Deep-Sea Res. II, 104, 164173, doi:10.1016/j.dsr2.2013.05.039.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., and R. W. Hallberg, 2008: Pacific subtropical cell response to reduced equatorial dissipation. J. Phys. Oceanogr., 38, 18941912, doi:10.1175/2008JPO3708.1.

    • Search Google Scholar
    • Export Citation
  • Henyey, F., 1991: Scaling of internal wave model predictions for ε, dynamics of oceanic internal gravity waves. Dynamics of Oceanic Internal Gravity Waves: Proc. Sixth ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 233–236. [Available online at http://www.soest.hawaii.edu/PubServices/1991pdfs/Henyey2.pdf.]

  • Henyey, F., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S., J. D. Nash, M. H. Alford, and K. I. Martini, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, doi:10.1175/JPO-D-11-0231.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. Hummon, T. K. Chereskin, and A. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, R. Pinkel, J. Klymak, and Z. Zhao, 2013a: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013b: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, doi:10.1175/JPO-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, S. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, doi:10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: Time scales of resonant interaction among oceanic internal waves. J. Phys. Oceanogr., 11, 139147, doi:10.1175/1520-0485(1981)011<0139:TSORIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. L. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. I. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2011: Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon shelf. J. Phys. Oceanogr., 41, 20372062, doi:10.1175/JPO-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28, 712726, doi:10.1175/1520-0485(1998)028<0712:LSCWLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tessler, Z. D., A. L. Gordon, L. J. Pratt, and J. Sprintall, 2010: Transport and dynamics of the Panay Sill overflow in the Philippine Seas. J. Phys. Oceanogr., 40, 26792695, doi:10.1175/2010JPO4395.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Wain, D. J., M. C. Gregg, M. H. Alford, R. C. Lien, G. S. Carter, and R. A. Hall, 2013: Propagation and dissipation of the internal tide in upper Monterey Canyon. J. Geophys. Res. Oceans, 118, 48554877, doi:10.1002/jgrc.20368.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, doi:10.1175/JPO-D-14-0167.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of southern ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, doi:10.1175/2009JPO4207.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, R.-C. Lien, M. C. Gregg, and G. S. Carter, 2012: Internal tides and mixing in a submarine canyon with time-varying stratification. J. Phys. Oceanogr., 42, 21212142, doi:10.1175/JPO-D-12-045.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 470 221 92
PDF Downloads 252 81 14