The Effect of the Kerguelen Plateau on the Ocean Circulation

Jinbo Wang Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jinbo Wang in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Mazloff Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew R. Mazloff in
Current site
Google Scholar
PubMed
Close
, and
Sarah T. Gille Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Sarah T. Gille in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Kerguelen Plateau is a major topographic feature in the Southern Ocean. Located in the Indian sector and spanning nearly 2000 km in the meridional direction from the polar to the subantarctic region, it deflects the eastward-flowing Antarctic Circumpolar Current and influences the physical circulation and biogeochemistry of the Southern Ocean. The Kerguelen Plateau is known to govern the local dynamics, but its impact on the large-scale ocean circulation has not been explored. By comparing global ocean numerical simulations with and without the Kerguelen Plateau, this study identifies two major Kerguelen Plateau effects: 1) The plateau supports a local pressure field that pushes the Antarctic Circumpolar Current northward. This process reduces the warm-water transport from the Indian to the Atlantic Ocean. 2) The plateau-generated pressure field shields the Weddell Gyre from the influence of the warmer subantarctic and subtropical waters. The first effect influences the strength of the Antarctic Circumpolar Current and the Agulhas leakage, both of which are important elements in the global thermohaline circulation. The second effect results in a zonally asymmetric response of the subpolar gyres to Southern Hemisphere wind forcing.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

Corresponding author address: Jinbo Wang, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: jinbow@alum.mit.edu

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Abstract

The Kerguelen Plateau is a major topographic feature in the Southern Ocean. Located in the Indian sector and spanning nearly 2000 km in the meridional direction from the polar to the subantarctic region, it deflects the eastward-flowing Antarctic Circumpolar Current and influences the physical circulation and biogeochemistry of the Southern Ocean. The Kerguelen Plateau is known to govern the local dynamics, but its impact on the large-scale ocean circulation has not been explored. By comparing global ocean numerical simulations with and without the Kerguelen Plateau, this study identifies two major Kerguelen Plateau effects: 1) The plateau supports a local pressure field that pushes the Antarctic Circumpolar Current northward. This process reduces the warm-water transport from the Indian to the Atlantic Ocean. 2) The plateau-generated pressure field shields the Weddell Gyre from the influence of the warmer subantarctic and subtropical waters. The first effect influences the strength of the Antarctic Circumpolar Current and the Agulhas leakage, both of which are important elements in the global thermohaline circulation. The second effect results in a zonally asymmetric response of the subpolar gyres to Southern Hemisphere wind forcing.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

Corresponding author address: Jinbo Wang, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: jinbow@alum.mit.edu

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Save
  • Allison, L. C., H. L. Johnson, and D. P. Marshall, 2011: Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline. J. Mar. Res., 69, 167–189, doi:10.1357/002224011798765330.

    • Search Google Scholar
    • Export Citation
  • Barker, P., B. Diekmann, and C. Escutia, 2007: Onset of Cenozoic Antarctic glaciation. Deep-Sea Res., 54, 2293–2307, doi:10.1016/j.dsr2.2007.07.027.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., L. M. Beal, and L. M. Duncan, 2005: Structure and transport of the Agulhas Current and TTS temporal variability. J. Oceanogr., 61, 479–492, doi:10.1007/s10872-005-0057-8.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., S. Alderson, B. King, and M. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683–707, doi:10.1175/JPO2702.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, and S. T. Gille, 2006: Location of the Antarctic polar front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr., 36, 2075–2089, doi:10.1175/JPO2973.1.

    • Search Google Scholar
    • Export Citation
  • Durgadoo, J. V., B. R. Loveday, C. J. C. Reason, P. Penven, and A. Biastoch, 2013: Agulhas leakage predominantly responds to the Southern Hemisphere westerlies. J. Phys. Oceanogr., 43, 2113–2131, doi:10.1175/JPO-D-13-047.1.

    • Search Google Scholar
    • Export Citation
  • Frey, F., and Coauthors, 2000: Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet. Sci. Lett., 176, 73–89, doi:10.1016/S0012-821X(99)00315-5.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, doi:10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A., and K. Bryan, 1971: Effects of geometry on the circulation of a three-dimensional Southern-Hemisphere ocean model. Deep-Sea Res. Oceanogr. Abstr., 18, 685–721, doi:10.1016/0011-7471(71)90086-6.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1994: Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: Method and application. J. Geophys. Res., 99, 18 255–18 273, doi:10.1029/94JC01172.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 2219–2232, doi:10.1175/1520-0485(1997)027<2219:TSOMBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., M. M. Carranza, R. Cambra, and R. Morrow, 2014: Wind-induced upwelling in the Kerguelen Plateau region. Biogeosci. Discuss., 11, 8373–8397, doi:10.5194/bgd-11-8373-2014.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 2232–2252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, and D. P. Stevens, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 26, 753–774, doi:10.1175/1520-0485(1996)026<0753:TDOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 3328–3345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., A36, 39–53, doi:10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and M. M. Nanneh, 1994: Isopycnal momentum budget of the Antarctic Circumpolar Current in the Fine Resolution Antarctic Model. J. Phys. Oceanogr., 24, 1201–1223, doi:10.1175/1520-0485(1994)024<1201:IMBOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and P. Isachsen, 2010: The linear models of the ACC. Prog. Oceanogr., 84, 139–157, doi:10.1016/j.pocean.2009.11.002.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, D. Menemenlis, Z. Xing, and L. Fu, 2002: Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr., 32, 1404–1429, doi:10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Livermore, R., A. Nankivell, G. Eagles, and P. Morris, 2005: Paleogene opening of Drake Passage. Earth Planet. Sci. Lett., 236, 459–470, doi:10.1016/j.epsl.2005.03.027.

    • Search Google Scholar
    • Export Citation
  • Loveday, B. R., J. V. Durgadoo, C. J. C. Reason, A. Biastoch, and P. Penven, 2014: Decoupling of the Agulhas leakage from the Agulhas Current. J. Phys. Oceanogr., 44, 1776–1797, doi:10.1175/JPO-D-13-093.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and K. Speer, 2010: Topography, jets, and eddy mixing in the Southern Ocean. J. Mar. Res., 68, 479–502, doi:10.1357/002224010794657227.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31, 1427–1439, doi:10.1175/1520-0485(2001)031<1427:MTAAZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 2341–2354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 5733–5752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Masich, J., T. K. Chereskin, and M. R. Mazloff, 2015: Topographic form stress in the Southern Ocean state estimate. J. Geophys. Res. Oceans, 120, 7919–7933, doi:10.1002/2015JC011143.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., A. Klocker, N. Bindoff, G. Williams, and S. Marsland, 2010: The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep-Sea Res. II, 57, 723–737, doi:10.1016/j.dsr2.2009.04.019.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and E. Palmen, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3A, 53–55, doi:10.1111/j.2153-3490.1951.tb00776.x.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., and Coauthors, 2013: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci., 6, 235–240, doi:10.1038/ngeo1738.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641–673, doi:10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., F. Vivier, F. Roquet, and E. Kestenare, 2009: Direct observations of the ACC transport across the Kerguelen Plateau. Geophys. Res. Lett., 36, L18603, doi:10.1029/2009GL039617.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 2007: Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep-Sea Res. I, 54, 1361–1389, doi:10.1016/j.dsr.2007.04.010.

    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. M. Hogg, P. G. Strutton, A. E. Kiss, R. Matear, A. Klocker, and E. van Sebille, 2014: Vertical transport in the ocean due to sub-mesoscale structures: Impacts in the Kerguelen region. Ocean Modell., 80, 10–23, doi:10.1016/j.ocemod.2014.05.001.

    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. M. Hogg, A. E. Kiss, and B. Gayen, 2015: Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett., 42, 1139–1147, doi:10.1002/2014GL062720.

    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, and S. Rintoul, 2011: Mean-flow and topographic control on surface eddy-mixing in the Southern Ocean. J. Mar. Res., 69, 753–777, doi:10.1357/002224011799849408.

    • Search Google Scholar
    • Export Citation
  • Sparrow, M. D., K. J. Heywood, J. Brown, and D. P. Stevens, 1996: Current structure of the south Indian Ocean. J. Geophys. Res., 101, 6377–6391, doi:10.1029/95JC03750.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929–951, doi:10.1002/qj.49712354008.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776–782, doi:10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956–972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 1811–1828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477–500, doi:10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. G. Olson, and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. Climate and Global Dynamics Division, National Center for Atmospheric Research Tech. Note NCAR/TN-388+STR, 98 pp.

  • van Sebille, E., P. J. van Leeuwen, A. Biastoch, C. Barron, and W. P. M. de Ruijter, 2009: Lagrangian validation of numerical drifter trajectories using drifting buoys: Application to the Agulhas system. Ocean Modell., 29, 269–276, doi:10.1016/j.ocemod.2009.05.005.

    • Search Google Scholar
    • Export Citation
  • Ward, M., and A. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133–146, doi:10.1016/j.ocemod.2011.08.004.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259–282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2012: The Southern Ocean and its climate in CCSM4. J. Climate, 25, 2652–2675, doi:10.1175/JCLI-D-11-00302.1.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 2267–2289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. L. Bindoff, and A. Forbes, 1998: Ocean-ice shelf interaction and possible bottom water formation in Prydz Bay, Antarctica. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 173–187, doi:10.1029/AR075p0173.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1208 350 94
PDF Downloads 753 156 10