Bottom Boundary Potential Vorticity Injection from an Oscillating Flow: A PV Pump

Xiaozhou Ruan Environmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Xiaozhou Ruan in
Current site
Google Scholar
PubMed
Close
and
Andrew F. Thompson Environmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Andrew F. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic boundary currents over the continental slope exhibit variability with a range of time scales. Numerical studies of steady, along-slope currents over a sloping bathymetry have shown that cross-slope Ekman transport can advect buoyancy surfaces in a bottom boundary layer (BBL) so as to produce vertically sheared geostrophic flows that bring the total flow to rest: a process known as buoyancy shutdown of Ekman transport or Ekman arrest. This study considers the generation and evolution of near-bottom flows due to a barotropic, oscillating, and laterally sheared flow over a slope. The sensitivity of the boundary circulation to changes in oscillation frequency ω, background flow amplitude, bottom slope, and background stratification is explored. When ω/f ≪ 1, where f is the Coriolis frequency, oscillations allow the system to escape from the steady buoyancy shutdown scenario. The BBL is responsible for generating a secondary overturning circulation that produces vertical velocities that, combined with the potential vorticity (PV) anomalies of the imposed barotropic flow, give rise to a time-mean, rectified, vertical eddy PV flux into the ocean interior: a “PV pump.” In these idealized simulations, the PV anomalies in the BBL make a secondary contribution to the time-averaged PV flux. Numerical results show the domain-averaged eddy PV flux increases nonlinearly with ω with a peak near the inertial frequency, followed by a sharp decay for ω/f > 1. Different physical mechanisms are discussed that could give rise to the temporal variability of boundary currents.

Corresponding author address: Xiaozhou Ruan, Environmental Science and Engineering, MC 131-24, California Institute of Technology, Pasadena, CA 91125. E-mail: xiaozhour@caltech.edu

Abstract

Oceanic boundary currents over the continental slope exhibit variability with a range of time scales. Numerical studies of steady, along-slope currents over a sloping bathymetry have shown that cross-slope Ekman transport can advect buoyancy surfaces in a bottom boundary layer (BBL) so as to produce vertically sheared geostrophic flows that bring the total flow to rest: a process known as buoyancy shutdown of Ekman transport or Ekman arrest. This study considers the generation and evolution of near-bottom flows due to a barotropic, oscillating, and laterally sheared flow over a slope. The sensitivity of the boundary circulation to changes in oscillation frequency ω, background flow amplitude, bottom slope, and background stratification is explored. When ω/f ≪ 1, where f is the Coriolis frequency, oscillations allow the system to escape from the steady buoyancy shutdown scenario. The BBL is responsible for generating a secondary overturning circulation that produces vertical velocities that, combined with the potential vorticity (PV) anomalies of the imposed barotropic flow, give rise to a time-mean, rectified, vertical eddy PV flux into the ocean interior: a “PV pump.” In these idealized simulations, the PV anomalies in the BBL make a secondary contribution to the time-averaged PV flux. Numerical results show the domain-averaged eddy PV flux increases nonlinearly with ω with a peak near the inertial frequency, followed by a sharp decay for ω/f > 1. Different physical mechanisms are discussed that could give rise to the temporal variability of boundary currents.

Corresponding author address: Xiaozhou Ruan, Environmental Science and Engineering, MC 131-24, California Institute of Technology, Pasadena, CA 91125. E-mail: xiaozhour@caltech.edu
Save
  • Benthuysen, J., and L. N. Thomas, 2012: Friction and diapycnal mixing at a slope: Boundary control of potential vorticity. J. Phys. Oceanogr., 42, 15091523, doi:10.1175/JPO-D-11-0130.1.

    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., and L. N. Thomas, 2013: Nonlinear stratified spindown over a slope. J. Fluid Mech., 726, 371403, doi:10.1017/jfm.2013.231.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and S. J. Lentz, 2010a: Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr., 40, 621635, doi:10.1175/2009JPO4266.1.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and S. J. Lentz, 2010b: Buoyancy arrest and bottom Ekman transport. Part II: Oscillating flow. J. Phys. Oceanogr., 40, 636655, doi:10.1175/2009JPO4267.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 2002: Deceleration of a finite-width, stratified current over a sloping bottom: Frictional spindown or buoyancy shutdown? J. Phys. Oceanogr., 32, 336352, doi:10.1175/1520-0485(2002)032<0336:DOAFWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dulaiova, H., M. Ardelan, P. B. Henderson, and M. A. Charette, 2009: Shelf-derived iron inputs drive biological productivity in the southern Drake Passage. Global Biogeochem. Cycles, 23, GB4014, doi:10.1029/2008GB003406.

    • Search Google Scholar
    • Export Citation
  • Flexas, M., M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015: Role of tides on the formation of the Antarctic Slope Front at the Weddell-Scotia Confluence. J. Geophys. Res. Oceans, 120, 36583680, doi:10.1002/2014JC010372.

    • Search Google Scholar
    • Export Citation
  • Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter, 1999: Lagrangian exploration of the California Undercurrent, 1992–95. J. Phys. Oceanogr., 29, 560583, doi:10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2011: Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping bottom. Phys. Fluids, 23, 101703, doi:10.1063/1.3651359.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., S. Sarkar, and J. R. Taylor, 2010: Large eddy simulation of a stratified boundary layer under an oscillatory current. J. Fluid Mech., 643, 233266, doi:10.1017/S002211200999200X.

    • Search Google Scholar
    • Export Citation
  • Greenspan, H., and L. Howard, 1963: On a time-dependent motion of a rotating fluid. J. Fluid Mech., 17, 385404, doi:10.1017/S0022112063001415.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2006: Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep-Sea Res. I, 53, 14831516, doi:10.1016/j.dsr.2006.06.005.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, doi:10.1175/JPO-D-14-0154.1.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., F. Colas, X. Capet, J. C. McWilliams, and D. B. Chelton, 2011: Eddy properties in the California Current System. J. Geophys. Res., 116, C08027, doi:10.1029/2010JC006895.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 1991: Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid Mech., 223, 631661, doi:10.1017/S0022112091001581.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, M. Nikurashin, and W. Peltier, 2015: Influence of enhanced abyssal diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr., 45, 25802597, doi:10.1175/JPO-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, doi:10.1175/JPO-D-13-0225.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J., A. Perlin, J. Klymak, M. Levine, T. Boyd, and P. Kosro, 2004: Convectively driven mixing in the bottom boundary layer. J. Phys. Oceanogr., 34, 21892202, doi:10.1175/1520-0485(2004)034<2189:CDMITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., W. M. Smethie, and J. L. Bullister, 2002: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res., 107 (C8), doi:10.1029/2001JC000976.

    • Search Google Scholar
    • Export Citation
  • Perlin, A., J. Moum, and J. Klymak, 2005: Response of the bottom boundary layer over a sloping shelf to variations in alongshore wind. J. Geophys. Res., 110, C10S09, doi:10.1029/2004JC002500.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1986: Vorticity dynamics of the oceanic general circulation. Annu. Rev. Fluid Mech., 18, 433497, doi:10.1146/annurev.fl.18.010186.002245.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., I. M. Held, and S. T. Garner, 2003: Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60, 10241040, doi:10.1175/1520-0469(2003)60<1024:BEIPVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 16441668, doi:10.1175/2007JPO3829.1.

    • Search Google Scholar
    • Export Citation
  • Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, doi:10.1175/JPO2830.1.

  • Thompson, A. F., K. J. Heywood, S. Schmidtko, and A. L. Stewart, 2014: Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci., 7, 879884, doi:10.1038/ngeo2289.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1987: Current and temperature variability on the continental slope. Philos. Trans. Roy. Soc. London, A323, 471517, doi:10.1098/rsta.1987.0100.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and S. Lentz, 1991: Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr., 21, 11711185, doi:10.1175/1520-0485(1991)021<1171:ABOAOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and S. Lentz, 1998: Dynamics of the bottom boundary layer on the northern California shelf. J. Phys. Oceanogr., 28, 20752093, doi:10.1175/1520-0485(1998)028<2075:DOTBBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., A. Orsi, S.-J. Kim, W. Nowlin, and R. Locarnini, 1998: Water masses and mixing near the Antarctic slope front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. J. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 1–27.

  • Williams, R. G., and V. Roussenov, 2003: The role of sloping sidewalls in forming potential vorticity contrasts in the ocean interior. J. Phys. Oceanogr., 33, 633648, doi:10.1175/1520-0485(2003)33<633:TROSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., K. Aagaard, R. D. Muench, J. Gunn, G. Björk, B. Rudels, A. Roach, and U. Schauer, 2001: The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments. Deep-Sea Res. I, 48, 17571792, doi:10.1016/S0967-0637(00)00091-1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res. Oceanogr. Abstr., 17, 293301, doi:10.1016/0011-7471(70)90022-7.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 814 391 160
PDF Downloads 468 126 5