Diurnal Sea Breezes Force Near-Inertial Waves along Rottnest Continental Shelf, Southwestern Australia

Hrvoje Mihanović School of Civil, Environmental and Mining Engineering, and The University of Western Australia Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia, and Institute of Oceanography and Fisheries, Split, Croatia

Search for other papers by Hrvoje Mihanović in
Current site
Google Scholar
PubMed
Close
,
Charitha Pattiaratchi School of Civil, Environmental and Mining Engineering, and The University of Western Australia Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Charitha Pattiaratchi in
Current site
Google Scholar
PubMed
Close
, and
Florence Verspecht School of Civil, Environmental and Mining Engineering, and The University of Western Australia Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Florence Verspecht in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of upper-ocean dynamics close to the critical latitude (ratio of the local inertial to diurnal frequency is 0.94) from a range of platforms (surface currents using HF radar, moored instruments, and satellite remote sensing data) off southwest Australia indicated the presence of energetic, near-inertial waves generated through the diurnal–inertial resonance. During the austral summer, when southerly winds and land–sea breeze (LSB) system dominated the wind regime, strong counterclockwise diurnal motions (amplitudes surpassing 0.3 m s−1) penetrated to 300-m depth with diurnal vertical isotherm fluctuations up to 60 m. The upward phase propagation speed of ~140 m day−1, deep penetration of diurnal currents below the mixed layer, and the ~180° phase difference between the upper and lower water column suggested that the local LSB system caused the resonant diurnal motions. Relative vorticity fluctuations along two cross-shore transects indicated changes to the local effective Coriolis frequency by more than 50% (±0.5f). In the presence of strong and relatively consistent cross-shore diurnal wind forcing in the study area, the main factors that controlled the observed energetic but sporadic near-inertial oscillations were the Leeuwin Current strength and spatial–temporal variations. These variations controlled the effective Coriolis frequency and enabled the effective pumping of diurnal wind energy into the ocean particularly when the effective Coriolis frequency was ~24 h.

Denotes Open Access content.

Corresponding author address: C. Pattiaratchi, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. E-mail: chari.pattiaratchi@uwa.edu.au

Abstract

Observations of upper-ocean dynamics close to the critical latitude (ratio of the local inertial to diurnal frequency is 0.94) from a range of platforms (surface currents using HF radar, moored instruments, and satellite remote sensing data) off southwest Australia indicated the presence of energetic, near-inertial waves generated through the diurnal–inertial resonance. During the austral summer, when southerly winds and land–sea breeze (LSB) system dominated the wind regime, strong counterclockwise diurnal motions (amplitudes surpassing 0.3 m s−1) penetrated to 300-m depth with diurnal vertical isotherm fluctuations up to 60 m. The upward phase propagation speed of ~140 m day−1, deep penetration of diurnal currents below the mixed layer, and the ~180° phase difference between the upper and lower water column suggested that the local LSB system caused the resonant diurnal motions. Relative vorticity fluctuations along two cross-shore transects indicated changes to the local effective Coriolis frequency by more than 50% (±0.5f). In the presence of strong and relatively consistent cross-shore diurnal wind forcing in the study area, the main factors that controlled the observed energetic but sporadic near-inertial oscillations were the Leeuwin Current strength and spatial–temporal variations. These variations controlled the effective Coriolis frequency and enabled the effective pumping of diurnal wind energy into the ocean particularly when the effective Coriolis frequency was ~24 h.

Denotes Open Access content.

Corresponding author address: C. Pattiaratchi, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. E-mail: chari.pattiaratchi@uwa.edu.au
Save
  • Anderson, R. J., 1993: A study of wind stress and heat flux over the open ocean by the inertial-dissipation method. J. Phys. Oceanogr., 23, 21532161, doi:10.1175/1520-0485(1993)023<2153:ASOWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., M. W. Evans, and B. L. Weber, 1977: Ocean surface currents mapped by radar. Science, 198, 138144, doi:10.1126/science.198.4313.138.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and T. P. Rippeth, 2009: Generation of bulk shear spikes in shallow stratified tidal seas. J. Phys. Oceanogr., 39, 969985, doi:10.1175/2008JPO4074.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, R. D., L. K. Shay, H. C. Graber, J. B. Edson, A. Karachintsev, C. L. Trump, and D. B. Ross, 1997: On the accuracy of HF radar surface current measurements: Intercomparisons with ship-based sensors. J. Geophys. Res., 102, 18 73718 748, doi:10.1029/97JC00049.

    • Search Google Scholar
    • Export Citation
  • Chen, C., R. O. Reid, and W. D. Nowlin Jr., 1996: Near-inertial oscillations over the Texas-Louisiana shelf. J. Geophys. Res., 101, 35093524, doi:10.1029/95JC03395.

    • Search Google Scholar
    • Export Citation
  • Clancy, R. M., J. D. Thompson, H. E. Hurlburt, and J. D. Lee, 1979: A model of mesoscale air-sea interaction in a sea breeze-coastal upwelling regime. Mon. Wea. Rev., 107, 14761505, doi:10.1175/1520-0493(1979)107<1476:AMOMAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., 1989: A model of diurnally forced vertical current structure near 30° latitude. Cont. Shelf Res., 9, 965980, doi:10.1016/0278-4343(89)90002-2.

    • Search Google Scholar
    • Export Citation
  • Cresswell, G. R., 2009: Current measurements at a year-long continental shelf mooring near Perth, Western Australia. J. Roy. Soc. West. Aust., 92, 165178.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Mechanics. Prentice Hall, 320 pp.

  • Davies, A. M., and J. Xing, 2005: The effect of a bottom shelf front upon the generation and propagation of near-inertial internal waves in the coastal ocean. J. Phys. Oceanogr., 35, 976990, doi:10.1175/JPO2732.1.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., M. K. Howard, and R. O. Reid, 2000: Seasonal variation of wind-driven diurnal current cycling on the Texas-Louisiana continental shelf. Geophys. Res. Lett., 27, 10171020, doi:10.1029/1999GL010491.

    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2013: Predictability of the Ningaloo Niño/Niña. Sci. Rep., 3, 2892, doi:10.1038/srep02892.

  • Edwards, C. R., 2008: Coastal ocean response to near-resonant sea breeze/land breeze near the critical latitude in the Georgia Bight. Ph.D. thesis, University of North Carolina-Chapel Hill, 124 pp.

  • Ekman, V. W., 1905: On the influence of the Earth’s rotation on ocean-currents. Arkiv Mat. Astron. Fys., 2, 152.

  • Emery, W. J., and R. E. Thomson, 1998: Data Analysis Methods in Physical Oceanography. Pergamon, 634 pp.

  • Federiuk, J., and J. S. Allen, 1996: Model studies of near-inertial waves in flow over the Oregon continental shelf. J. Phys. Oceanogr., 26, 20532075, doi:10.1175/1520-0485(1996)026<2053:MSONIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, M., A. Waite, and P. A. Thompson, 2009: Climate variability and ocean production in the Leeuwin Current System off the west coast of Western Australia. J. Roy. Soc. West. Aust., 92, 6781.

    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S.-P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, doi:10.1038/srep01277.

    • Search Google Scholar
    • Export Citation
  • Ferré, B., K. Guizien, X. Durrieu de Madron, A. Palanques, J. Guillén, and A. Grémare, 2005: Fine-grained sediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion (NW Mediterranean). Cont. Shelf Res., 25, 24102427, doi:10.1016/j.csr.2005.08.017.

    • Search Google Scholar
    • Export Citation
  • Gallop, S. L., F. Verspecht, and C. B. Pattiaratchi, 2012: Sea breezes drive currents on the inner continental shelf off southwest Western Australia. Ocean Dyn., 62, 569583, doi:10.1007/s10236-011-0515-3.

    • Search Google Scholar
    • Export Citation
  • Gersbach, G. H., C. B. Pattiaratchi, G. N. Ivey, and G. R. Cresswell, 1999: Upwelling on the south-west coast of Australia—Source of the Capes Current? Cont. Shelf Res., 19, 363400, doi:10.1016/S0278-4343(98)00088-0.

    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res. Oceanogr. Abstr., 19, 833846, doi:10.1016/0011-7471(72)90002-2.

    • Search Google Scholar
    • Export Citation
  • Gough, M. K., A. J. H. M. Reniers, J. H. MacMahan, and S. D. Howden, 2016: Resonant near-surface inertial oscillations in the northeastern Gulf of Mexico. J. Geophys. Res. Oceans, 121, 21632182, doi:10.1002/2015JC011372.

    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, doi:10.5194/npg-11-561-2004.

    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., G. Antonischki, H.-H. Essen, and T. Schlick, 1999: Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coastal Eng., 37, 219234, doi:10.1016/S0378-3839(99)00027-7.

    • Search Google Scholar
    • Export Citation
  • Hammond, T. M., C. B. Pattiaratchi, D. Eccles, M. J. Osborne, L. A. Nash, and M. B. Collins, 1987: Ocean Surface Current Radar (OSCR) vector measurements on the inner continental shelf. Cont. Shelf Res., 7, 411431, doi:10.1016/0278-4343(87)90108-7.

    • Search Google Scholar
    • Export Citation
  • Hanson, C. E., C. B. Pattiaratchi, and A. M. Waite, 2005: Seasonal production regimes off south-western Australia: Influence of the Capes and Leeuwin Currents on phytoplankton dynamics. Mar. Freshwater Res., 56, 10111026, doi:10.1071/MF04288.

    • Search Google Scholar
    • Export Citation
  • Heron, M. L., and A. Prytz, 2011: The data archive for the phased array HF radars in the Australian Coastal Ocean Radar Network. OCEANS 2011 IEEE - Spain, Santander, Spain, Institute of Electrical and Electronics Engineers, 12207384, doi:10.1109/Oceans-Spain.2011.6003440.

  • Hopkins, J. E., G. R. Stephenson, J. A. M. Green, M. E. Inall, and M. R. Palmer, 2014: Storms modify baroclinic energy fluxes in a seasonally stratified shelf sea: Inertial-tidal interaction. J. Geophys. Res. Oceans, 119, 68636883, doi:10.1002/2014JC010011.

    • Search Google Scholar
    • Export Citation
  • Hunter, E., R. Chant, L. Bowers, S. Glenn, and J. Kohut, 2007: Spatial and temporal variability of diurnal wind forcing in the coastal ocean. Geophys. Res. Lett., 34, L03607, doi:10.1029/2006GL028945.

    • Search Google Scholar
    • Export Citation
  • Hyder, P., J. H. Simpson, and S. Christopoulos, 2002: Sea-breeze forced diurnal surface currents in the Thermaikos Gulf, north-west Aegean. Cont. Shelf Res., 22, 585601, doi:10.1016/S0278-4343(01)00080-2.

    • Search Google Scholar
    • Export Citation
  • Hyder, P., J. H. Simpson, J. Xing, and S. T. Gille, 2011: Observations over an annual cycle and simulations of wind-forced oscillations near the critical latitude for diurnal–inertial resonance. Cont. Shelf Res., 31, 15761591, doi:10.1016/j.csr.2011.06.001.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, and A. J. Mariano, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, doi:10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., Z. R. Hallock, and W. J. Teague, 2007: Near-inertial currents in the DeSoto Canyon region. Cont. Shelf Res., 27, 24072426, doi:10.1016/j.csr.2007.06.014.

    • Search Google Scholar
    • Export Citation
  • Kaplan, D. M., J. Largier, and L. W. Botsford, 2005: HF radar observations of surface circulation off Bodega Bay (northern California, USA). J. Geophys. Res., 110, C10020, doi:10.1029/2005JC002959.

    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, doi:10.1007/s00382-013-1961-z.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., and G. Crawford, 2014: Resonant ocean current responses driven by coastal winds near the critical latitude. Geophys. Res. Lett., 41, 55815587, doi:10.1002/2014GL060402.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., M. C. Hendershott, and C. D. Winant, 2001: Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J. Geophys. Res., 106, 19 71519 729, doi:10.1029/2001JC000811.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. S. Liang, and R. H. Weisberg, 2007: Rectification of the bias in the wavelet power spectrum. J. Atmos. Oceanic Technol., 24, 20932102, doi:10.1175/2007JTECHO511.1.

    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., G. C. Pitcher, T. A. Probyn, and R. M. Kudela, 2014: The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa. Deep-Sea Res. II, 101, 5062, doi:10.1016/j.dsr2.2013.01.016.

    • Search Google Scholar
    • Export Citation
  • Masselink, G., and C. B. Pattiaratchi, 2001: Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J. Coastal Res., 17, 173187. [Available online at http://www.jstor.org/stable/4300161.]

    • Search Google Scholar
    • Export Citation
  • Monterey, G., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 102 pp.

  • Nam, S., and U. Send, 2013: Resonant diurnal oscillations and mean alongshore flows driven by sea/land breeze forcing in the coastal Southern California Bight. J. Phys. Oceanogr., 43, 616630, doi:10.1175/JPO-D-11-0148.1.

    • Search Google Scholar
    • Export Citation
  • Orlić, M., and Z. Pasarić, 2011: A simple analytical model of periodic coastal upwelling. J. Phys. Oceanogr., 41, 12711276, doi:10.1175/JPO-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, doi:10.1146/annurev-marine-121211-172315.

    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C. B., and S. J. Buchan, 1991: Implications of long-term climate change for the Leeuwin Current. J. Roy. Soc. West. Aust., 74, 133140.

    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C. B., and M. Eliot, 2009: Sea level variability in south-west Australia: From hours to decades. Coastal Engineering: Proceedings of the Thirty-First International Coastal Engineering Conference, J. McKee Smith, Ed., World Scientific, 1186–1198.

  • Pattiaratchi, C. B., and M. Woo, 2009: The mean state of the Leeuwin Current system between North West Cape and Cape Leeuwin. J. Roy. Soc. West. Aust., 92, 221241.

    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C. B., B. Hegge, J. Gould, and I. Eliot, 1997: Impact of sea-breeze activity on nearshore and foreshore processes in southwestern Australia. Cont. Shelf Res., 17, 15391560, doi:10.1016/S0278-4343(97)00016-2.

    • Search Google Scholar
    • Export Citation
  • Pearce, A., and C. B. Pattiaratchi, 1999: The Capes Current: A summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia. Cont. Shelf Res., 19, 401420, doi:10.1016/S0278-4343(98)00089-2.

    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., R. D. McCauley, and C. B. Pattiaratchi, 2006: Thermal structure above the Perth Canyon reveals Leeuwin Current, undercurrent and weather influences and the potential for upwelling. Mar. Freshwater Res., 57, 849861, doi:10.1071/MF05247.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., 1988: Diurnal period wind stress and current fluctuations over the continental shelf off northern California. J. Geophys. Res., 93, 22572276, doi:10.1029/JC093iC03p02257.

    • Search Google Scholar
    • Export Citation
  • Sharples, J., and P. Tett, 1994: Modelling the effect of physical variability on the midwater chlorophyll maximum. J. Mar. Res., 52, 219238, doi:10.1357/0022240943077109.

    • Search Google Scholar
    • Export Citation
  • Sharples, J., C. M. Moore, T. P. Rippeth, P. M. Holligan, D. J. Hydes, N. R. Fisher, and J. H. Simpson, 2001: Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr., 46, 486496, doi:10.4319/lo.2001.46.3.0486.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., J. Martinez-Pedraja, T. M. Cook, B. K. Haus, and R. H. Weisberg, 2007: High-frequency radar mapping of surface currents using WERA. J. Atmos. Oceanic Technol., 24, 484503, doi:10.1175/JTECH1985.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138, doi:10.1016/j.ocemod.2008.01.002.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., P. Hyder, and T. P. Rippeth, 2002: Forced oscillations near the critical latitude for diurnal-inertial resonance. J. Phys. Oceanogr., 32, 177187, doi:10.1175/1520-0485(2002)032<0177:FONTCL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., A. Huyer, J. S. Godfrey, and J. A. Church, 1991: The Leeuwin Current off Western Australia, 1986–1987. J. Phys. Oceanogr., 21, 323345, doi:10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2010: Internal Gravity Waves. Cambridge University Press, 377 pp.

  • Thompson, P. A., K. Wild-Allen, M. Lourey, C. Rousseaux, A. M. Waite, M. Feng, and L. E. Beckley, 2011: Nutrients in an oligotrophic boundary current: Evidence of a new role for the Leeuwin Current. Prog. Oceanogr., 91, 345359, doi:10.1016/j.pocean.2011.02.011.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Veleda, D., R. Montagne, and M. Araujo, 2012: Cross-wavelet bias corrected by normalizing scales. J. Atmos. Oceanic Technol., 29, 14011408, doi:10.1175/JTECH-D-11-00140.1.

    • Search Google Scholar
    • Export Citation
  • Verspecht, F., and C. B. Pattiaratchi, 2010: On the significance of wind event frequency for particulate resuspension and light attenuation in coastal waters. Cont. Shelf Res., 30, 19711982, doi:10.1016/j.csr.2010.09.008.

    • Search Google Scholar
    • Export Citation
  • Wolanski, E., 1986: A simple analytical model of low-frequency wind-driven upwelling on a continental slope. J. Phys. Oceanogr., 16, 16941702, doi:10.1175/1520-0485(1986)016<1694:ASAMOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zaker, N. H., J. Imberger, and C. B. Pattiaratchi, 2007: Dynamics of the coastal boundary layer off Perth, Western Australia. J. Coastal Res., 23, 11121130, doi:10.2112/04-0374.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., L. Xie, Y. Hou, H. Zhao, Y. Qi, and X. Yi, 2014: Tropical storm-induced turbulent mixing and chlorophyll-a enhancement in the continental shelf southeast of Hainan Island. J. Mar. Syst., 129, 405414, doi:10.1016/j.jmarsys.2013.09.002.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. F. Di Marco, D. C. Smith IV, M. K. Howard, and R. D. Hetland, 2009: Near-resonant ocean response to sea breeze on a stratified continental shelf. J. Phys. Oceanogr., 39, 21372155, doi:10.1175/2009JPO4054.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., D. C. Smith IV, S. F. Di Marco, and R. D. Hetland, 2010: A numerical study of sea-breeze-driven ocean Poincare wave propagation and mixing near the critical latitude. J. Phys. Oceanogr., 40, 4866, doi:10.1175/2009JPO4216.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 665 203 29
PDF Downloads 413 103 9