Interaction between a Vertical Turbulent Jet and a Thermocline

Ekaterina Ezhova Linné FLOW Centre, and Swedish e-Science Research Centre, KTH Mechanics, Stockholm, Sweden

Search for other papers by Ekaterina Ezhova in
Current site
Google Scholar
PubMed
Close
,
Claudia Cenedese Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Claudia Cenedese in
Current site
Google Scholar
PubMed
Close
, and
Luca Brandt Linné FLOW Centre, and Swedish e-Science Research Centre, KTH Mechanics, Stockholm, Sweden

Search for other papers by Luca Brandt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to 1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment, jet oscillations, and the generation of internal waves are examined. The mean jet penetration is predicted well by a simple model based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the entrainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the higher peak exceeds the maximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is observed at higher Froude numbers.

Corresponding author address: Ekaterina Ezhova, Linné FLOW Centre and Swedish e-Science Research Centre, KTH Mechanics, Osquars Backe 18, 10044 Stockholm, Sweden. E-mail: eezhova@mech.kth.se

Abstract

The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to 1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment, jet oscillations, and the generation of internal waves are examined. The mean jet penetration is predicted well by a simple model based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the entrainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the higher peak exceeds the maximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is observed at higher Froude numbers.

Corresponding author address: Ekaterina Ezhova, Linné FLOW Centre and Swedish e-Science Research Centre, KTH Mechanics, Osquars Backe 18, 10044 Stockholm, Sweden. E-mail: eezhova@mech.kth.se
Save
  • Ansong, J. K., and B. R. Sutherland, 2010: Internal gravity waves generated by convective plumes. J. Fluid Mech., 648, 405–434, doi:10.1017/S0022112009993193.

    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., P. J. Kyba, and B. R. Sutherland, 2005: Fountains impinging on a density interface. J. Fluid Mech., 595, 115–139, doi:10.1017/S0022112007009093.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, L. J., and R. C. Kerr, 1998: Turbulent fountains in a stratified fluid. J. Fluid Mech., 358, 335–356, doi:10.1017/S0022112097008252.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, L. J., and R. C. Kerr, 2000: A theoretical model of a turbulent fountain. J. Fluid Mech., 424, 197–216, doi:10.1017/S0022112000001907.

    • Search Google Scholar
    • Export Citation
  • Bondur, V. G., Y. V. Grebenyuk, E. V. Ezhova, V. I. Kazakov, D. A. Sergeev, I. A. Soustova, and Y. I. Troitskaya, 2010: Surface manifestations of internal waves investigated by a subsurface buoyant jet: Part 2. Internal waves field. Izv. Atmos. Ocean. Phys., 46, 347–359, doi:10.1134/S0001433810030084.

    • Search Google Scholar
    • Export Citation
  • Burridge, H. C., and G. R. Hunt, 2012: The rise heights of low- and high-Froude-number turbulent axisymmetric fountains. J. Fluid Mech., 691, 392–416, doi:10.1017/jfm.2011.480.

    • Search Google Scholar
    • Export Citation
  • Burridge, H. C., and G. R. Hunt, 2013: The rhythm of fountains: the length and time scales of rise height fluctuations at low and high Froude numbers. J. Fluid Mech., 728, 91–119, doi:10.1017/jfm.2013.263.

    • Search Google Scholar
    • Export Citation
  • Childs, H., and Coauthors, 2012: VisIt: An end-user tool for visualizing and analyzing very large data. High Performance Visualization: Enabling Extreme-Scale Scientific Insight, CRC Press, 357–372.

  • Cotel, A. J., J. A. Gjestvang, N. N. Ramkhelavan, and R. E. Breidental, 1997: Laboratory experiments of a jet impinging on a stratified interface. Exp. Fluids, 23, 155–160, doi:10.1007/s003480050097.

    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., and Y. I. Troitskaya, 2012: Regular and chaotic dynamics of a fountain in a stratified fluid. Chaos, 22, 023116, doi:10.1063/1.4704814.

    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., and Y. I. Troitskaya, 2013: Internal wave radiation by a turbulent fountain in a stratified fluid. Fluid Dyn., 48, 827–836, doi:10.1134/S0015462813060136.

    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., and L. A. Ostrovsky, 2015: Dynamics of turbulence under the effect of stratification and internal waves. Nonlinear Processes Geophys., 22, 337–348, doi:10.5194/npg-22-337-2015.

    • Search Google Scholar
    • Export Citation
  • Ezhova, E. V., and Y. I. Troitskaya, 2012: Nonsteady dynamics of turbulent axisymmetric jets in a stratified fluid: Part 2. Mechanism of excitation of axisymmetric oscillations in a submerged jet. Izv. Atmos. Ocean. Phys., 48, 528–537, doi:10.1134/S0001433812050027.

    • Search Google Scholar
    • Export Citation
  • Ezhova, E. V., D. A. Sergeev, A. A. Kandaurov, and Y. I. Troitskaya, 2012: Nonsteady dynamics of turbulent axisymmetric jets in a stratified fluid: Part 1. Experimental study. Izv. Atmos. Ocean. Phys., 48, 409–417, doi:10.1134/S0001433812040081.

    • Search Google Scholar
    • Export Citation
  • Fischer, P. F., J. W. Lottes, and S. G. Kerkemeier, 2008: Nek5000. Accessed 30 December 2014. [Available online at http://nek5000.mcs.anl.gov.]

  • Friedman, P. D., 2006: Oscillations in height of a negatively buoyant jet. J. Fluids Eng., 128, 880–882, doi:10.1115/1.2201647.

  • Friedman, P. D., V. D. Vadokoot, W. J. Meyer, and S. Carey, 2007: Instability threshold of a negatively buoyant fountain. Exp. Fluids, 42, 751–759, doi:10.1007/s00348-007-0283-5.

    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3A, 1760–1765, doi:10.1063/1.857955.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., 1994: Atmospheric jets and plumes. Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes, P. A. Davies and M. J. Valente Neves, Eds., Kluwer Academic Publishers, 309–334.

  • Hussein, J., S. P. Capp, and W. K. George, 1994: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech., 258, 31–75, doi:10.1017/S002211209400323X.

    • Search Google Scholar
    • Export Citation
  • Jirka, G. H., and J. H. W. Lee, 1994: Waste disposal in the ocean. Water Quality and Its Control, M. Hino, Ed., Balkema, 193–242.

  • Kamenkovich, V. M., and A. S. Monin, 1978: Ocean Physics. Vol. 2. Nauka Publishing House, 439 pp.

  • Kaye, N. B., and G. R. Hunt, 2006: Weak fountains. J. Fluid Mech., 558, 319–328, doi:10.1017/S0022112006000383.

  • Knauss, J., 2005: Introduction to Physical Oceanography. 2nd ed. Waveland Press, 320 pp.

  • Lin, W., and S. W. Armfield, 2000: Direct simulation of weak axisymmetric fountains in a homogeneous fluid. J. Fluid Mech., 403, 67–88, doi:10.1017/S0022112099006953.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. J. P., and P. F. Linden, 2005: The entrainment due to a turbulent fountain at a density interface. J. Fluid Mech., 542, 25–52, doi:10.1017/S002211200500635X.

    • Search Google Scholar
    • Export Citation
  • List, E. J., 1982: Turbulent jets and plumes. Annu. Rev. Fluid Mech., 14, 189–212, doi:10.1146/annurev.fl.14.010182.001201.

  • Matusov, P. A., L. A. Ostrovsky, and L. S. Tsimring, 1989: Amplification of small scale turbulence by the internal waves. Dokl. Acad. Sci. USSR, 307, 979–984.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1981: Negatively buoyant vertical jets. Tellus, 33A, 313–320, doi:10.1111/j.2153-3490.1981.tb01754.x.

  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 1–25, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Ohlsson, J., P. Schlatter, P. F. Fischer, and D. S. Henningson, 2010: Large eddy simulation of turbulent flow in a plane asymmetric diffuser by the spectral-element method. Direct and Large-Eddy Simulation VII, V. Armenio, B. Geurts, and J. Fröhlich, Eds., ERCOFTAC Series, Vol. 13, Springer, 197–204, doi:10.1007/978-90-481-3652-0_29.

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251–269, doi:10.1016/0021-9991(76)90023-1.

    • Search Google Scholar
    • Export Citation
  • Panchapakesan, N. R., and J. L. Lumley, 1993: Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech., 246, 197–223, doi:10.1017/S0022112093000096.

    • Search Google Scholar
    • Export Citation
  • Pham, M. V., F. Plourde, S. K. Doan, and S. Balachandar, 2006: Large-eddy simulation of a pure thermal plume under rotating conditions. Phys. Fluids, 18, 015101, doi:10.1063/1.2162186.

    • Search Google Scholar
    • Export Citation
  • Pham, M. V., F. Plourde, and S. K. Doan, 2007: Direct and large-eddy simulations of a pure thermal plume. Phys. Fluids, 19, 125103, doi:10.1063/1.2813043.

    • Search Google Scholar
    • Export Citation
  • Picano, F., and C. S. Casciola, 2007: Small-scale isotropy and universality of axisymmetric jets. Phys. Fluids, 19, 118106, doi:10.1063/1.2804955.

    • Search Google Scholar
    • Export Citation
  • Picano, F., and K. Hanjalic, 2012: Leray-α regularization of the Smagorinsky-closed filtered equations for turbulent jets at high Reynolds numbers. Flow Turbul. Combust., 89, 627–650, doi:10.1007/s10494-012-9413-0.

    • Search Google Scholar
    • Export Citation
  • Pope, S., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res. Oceans, 118, 2492–2506, doi:10.1002/jgrc.20142.

    • Search Google Scholar
    • Export Citation
  • Shrinivas, A. B., and G. R. Hunt, 2014: Unconfined turbulent entrainment across density interfaces. J. Fluid Mech., 757, 573–598, doi:10.1017/jfm.2014.474.

    • Search Google Scholar
    • Export Citation
  • Shrinivas, A. B., and G. R. Hunt, 2015: Confined turbulent entrainment across density interfaces. J. Fluid Mech., 779, 116–143, doi:10.1017/jfm.2015.366.

    • Search Google Scholar
    • Export Citation
  • Shy, S. S., 1995: Mixing dynamics of jet interaction with a sharp density interface. Exp. Therm. Fluid Sci., 10, 355–369, doi:10.1016/0894-1777(94)00095-P.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99–164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., 2008: Introduction to Physical Oceanography. Texas A&M University, 345 pp.

  • Straneo, F., and C. Cenedese, 2015: Dynamics of Greenlands glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89–112, doi:10.1146/annurev-marine-010213-135133.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. Curry, D. Sutherland, G. Hamilton, C. Cenedese, K. Vage, and L. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geophys., 4, 322–327, doi:10.1038/ngeo1109.

    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y. I., D. A. Sergeev, E. V. Ezhova, I. A. Soustova, and V. I. Kazakov, 2008: Self-induced internal waves excited by buoyant plumes in a stratified tank. Dokl. Earth Sci., 419, 506–510, doi:10.1134/S1028334X08030343.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1966: Jets and plumes with negative or reversing buoyancy. J. Fluid Mech., 26, 779–792, doi:10.1017/S0022112066001526.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Williamson, N., N. Srinarayana, S. W. Armfield, G. D. McBain, and W. Lin, 2008: Low-Reynolds-number fountain behaviour. J. Fluid Mech., 608, 297–317, doi:10.1017/S0022112008002310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 532 210 36
PDF Downloads 372 103 7