Intensification of Upper-Ocean Submesoscale Turbulence through Charney Baroclinic Instability

Xavier Capet CNRS, IRD, Sorbonne Universités, UPMC, MNHN, LOCEAN, Paris, France

Search for other papers by Xavier Capet in
Current site
Google Scholar
PubMed
Close
,
Guillaume Roullet University of Brest, CNRS, IRD, Ifremer, Laboratoire d’Ocanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by Guillaume Roullet in
Current site
Google Scholar
PubMed
Close
,
Patrice Klein University of Brest, CNRS, IRD, Ifremer, Laboratoire d’Ocanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by Patrice Klein in
Current site
Google Scholar
PubMed
Close
, and
Guillaume Maze University of Brest, CNRS, IRD, Ifremer, Laboratoire d’Ocanographie Physique et Spatiale, IUEM, Brest, France

Search for other papers by Guillaume Maze in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the description of an oceanic variant of the Charney baroclinic instability, arising from the joint presence of (i) an equatorward buoyancy gradient that extends from the surface into the ocean interior and (ii) reduced subsurface stratification, for example, as produced by wintertime convection or subduction. This study analyzes forced dissipative simulations with and without Charney baroclinic instability (C-BCI). In the former, C-BCI strengthens near-surface frontal activity with important consequences in terms of turbulent statistics: increased variance of vertical vorticity and velocity and increased vertical turbulent fluxes. Energetic consequences are explored. Despite the atypical enhancement of submesoscale activity in the simulation subjected to C-BCI, and contrary to several recent studies, the downscale energy flux at the submesoscale en route to dissipation remains modest in the flow energetic equilibration. In particular, it is modest vis à vis the global energy input to the system, the eddy kinetic energy input through conversion of available potential energy, and the classical inverse cascade of kinetic energy. Linear stability analysis suggests that the southern flank of the Gulf Stream may be conducive to oceanic Charney baroclinic instability in spring, following mode water formation and upper-ocean destratification.

Corresponding author address: Xavier Capet, LOCEAN, 4 Place Jussieu, 75005 Paris, France. E-mail: xclod@locean-ipsl.upmc.fr

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Abstract

This study focuses on the description of an oceanic variant of the Charney baroclinic instability, arising from the joint presence of (i) an equatorward buoyancy gradient that extends from the surface into the ocean interior and (ii) reduced subsurface stratification, for example, as produced by wintertime convection or subduction. This study analyzes forced dissipative simulations with and without Charney baroclinic instability (C-BCI). In the former, C-BCI strengthens near-surface frontal activity with important consequences in terms of turbulent statistics: increased variance of vertical vorticity and velocity and increased vertical turbulent fluxes. Energetic consequences are explored. Despite the atypical enhancement of submesoscale activity in the simulation subjected to C-BCI, and contrary to several recent studies, the downscale energy flux at the submesoscale en route to dissipation remains modest in the flow energetic equilibration. In particular, it is modest vis à vis the global energy input to the system, the eddy kinetic energy input through conversion of available potential energy, and the classical inverse cascade of kinetic energy. Linear stability analysis suggests that the southern flank of the Gulf Stream may be conducive to oceanic Charney baroclinic instability in spring, following mode water formation and upper-ocean destratification.

Corresponding author address: Xavier Capet, LOCEAN, 4 Place Jussieu, 75005 Paris, France. E-mail: xclod@locean-ipsl.upmc.fr

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Save
  • Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 2010: Baroclinic instability and submesoscale eddy formation in weakly stratified oceans under cooling. J. Geophys. Res., 115, C11027, doi:10.1029/2010JC006125.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. R. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34, 22572273, doi:10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ascani, F., K. J. Richards, E. Firing, S. Grant, K. S. Johnson, Y. Jia, R. Lukas, and D. M. Karl, 2013: Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Res. II, 93, 119134, doi:10.1016/j.dsr2.2013.01.034.

    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and S. G. Llewellyn Smith, 2015: Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J. Phys. Oceanogr., 45, 272293, doi:10.1175/JPO-D-14-0068.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, doi:10.1002/qj.49709239302.

    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, doi:10.1175/JPO-D-14-0205.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, doi:10.1017/jfm.2015.700.

    • Search Google Scholar
    • Export Citation
  • Capet, X., E. J. Campos, and A. M. Paiva, 2008a: Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett., 35, L15605, doi:10.1029/2008GL034736.

    • Search Google Scholar
    • Export Citation
  • Capet, X., F. Colas, P. Penven, P. Marchesiello, and J. C. McWilliams, 2008b: Eddies in eastern-boundary subtropical upwelling systems. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 131–147.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008d: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, doi:10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P.-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16 60316 622, doi:10.1029/2000JC000205.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1A, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Emery, W., W. Lee, and L. Magaard, 1984: Geographic and seasonal distributions of Brunt–Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr., 14, 294317, doi:10.1175/1520-0485(1984)014<0294:GASDOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, doi:10.1175/2007JPO3788.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, doi:10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129, 12731295, doi:10.1175/1520-0493(2001)129<1273:SOCTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and D. L. Rudnick, 2009: Observations of the transition layer. J. Phys. Oceanogr., 39, 780797, doi:10.1175/2008JPO3824.1.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, and E. Pallàs-Sanz, 2011: Elevated mixing at a front. J. Geophys. Res., 116, C11033, doi:10.1029/2011JC007192.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., X. Capet, G. Madec, G. Roullet, and P. Klein, 2015: Dissipation of the energy imparted by mid-latitude storms in the Southern Ocean. Ocean Sci., 12, 743769, doi:10.5194/os-12-743-2016.

    • Search Google Scholar
    • Export Citation
  • Klein, P., A.-M. Tréguier, and B. L. Hua, 1998: Three-dimensional stirring of thermohaline fronts. J. Mar. Res., 56, 589612, doi:10.1357/002224098765213595.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008a: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008b: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, doi:10.1175/JPO2840.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., P. Klein, and B. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36, 15771590, doi:10.1175/JPO2923.1.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A. Treguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, doi:10.1357/002224001762842181.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. S. Franks, A. P. Martin, and P. Riviére, 2012: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, doi:10.1029/2012GL052756.

    • Search Google Scholar
    • Export Citation
  • Lima, I. D., D. B. Olson, and S. C. Doney, 2002: Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: Biological production and community structure. J. Geophys. Res., 107, doi:10.1029/2000JC000393.

    • Search Google Scholar
    • Export Citation
  • MacVean, M., and J. Woods, 1980: Redistribution of scalars during upper ocean frontogenesis: A numerical model. Quart. J. Roy. Meteor. Soc., 106, 293311, doi:10.1002/qj.49710644805.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, doi:10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., X. Capet, and C. Menkes, 2011: Submesoscale turbulence in tropical instability waves. Ocean Modell., 39, 3146, doi:10.1016/j.ocemod.2011.04.011.

    • Search Google Scholar
    • Export Citation
  • Marino, R., A. Pouquet, and D. Rosenberg, 2015: Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett., 114, 114504, doi:10.1103/PhysRevLett.114.114504.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Molemaker, and I. Yavneh, 2001: From stirring to mixing of momentum: Cascades from balanced flows to dissipation in the oceanic interior. From Stirring to Mixing in a Stratified Ocean: Proc. Aha’ Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 59–66.

  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, doi:10.1007/s10236-013-0633-1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Müller, P., J. C. McWilliams, and M. J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Baumert, J. Simpson, and J. Sundermann, Eds., Cambridge University Press, 397–405.

  • Munk, W., L. Armi, K. Fischer, and F. Zachariansen, 2000: Spirals on the sea. Proc. Roy. Soc. London, A456, 12171280, doi:10.1098/rspa.2000.0560.

    • Search Google Scholar
    • Export Citation
  • Nurser, A., and J. Zhang, 2000: Eddy-induced mixed layer shallowing and mixed layer-thermocline exchange. J. Geophys. Res., 105, 21 85121 868, doi:10.1029/2000JC900018.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Pouquet, A., and R. Marino, 2013: Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett., 111, 234501, doi:10.1103/PhysRevLett.111.234501.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 44, 30793098, doi:10.1175/JPO-D-14-0071.1.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., A. Tandon, and A. Mahadevan, 2014: Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans, 119, 84958511, doi:10.1002/2014JC010211.

    • Search Google Scholar
    • Export Citation
  • Rivière, P., A. M. Treguier, and P. Klein, 2004: Effects of bottom friction on nonlinear equilibration of an oceanic baroclinic jet. J. Phys. Oceanogr., 34, 416432, doi:10.1175/1520-0485(2004)034<0416:EOBFON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 23282342, doi:10.1175/JPO-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., J. C. McWilliams, X. Capet, and M. J. Molemaker, 2012: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Oceanogr., 42, 1838, doi:10.1175/JPO-D-11-09.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, doi:10.1038/ncomms6636.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15411580, doi:10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, doi:10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, doi:10.1175/JPO-D-10-05016.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, doi:10.1357/002224007783649484.

    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, doi:10.1016/j.ocemod.2015.12.004.

    • Search Google Scholar
    • Export Citation
  • Spall, S., and K. Richards, 2000: A numerical model of mesoscale frontal instabilities and plankton dynamics—I. Model formulation and initial experiments. Deep-Sea Res., 47, 12611301, doi:10.1016/S0967-0637(99)00081-3.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38, 25012518, doi:10.1175/2008JPO3797.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., and J. Taylor, 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18606, doi:10.1029/2010GL044680.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and S. Smith, 2011: Scales, growth rates and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 866 246 24
PDF Downloads 689 152 11