Loop Current Frontal Eddies: Formation along the Campeche Bank and Impact of Coastally Trapped Waves

Julien Jouanno LEGOS, Université de Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France

Search for other papers by Julien Jouanno in
Current site
Google Scholar
PubMed
Close
,
José Ochoa Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico

Search for other papers by José Ochoa in
Current site
Google Scholar
PubMed
Close
,
Enric Pallàs-Sanz Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico

Search for other papers by Enric Pallàs-Sanz in
Current site
Google Scholar
PubMed
Close
,
Julio Sheinbaum Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico

Search for other papers by Julio Sheinbaum in
Current site
Google Scholar
PubMed
Close
,
Fernando Andrade-Canto Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico

Search for other papers by Fernando Andrade-Canto in
Current site
Google Scholar
PubMed
Close
,
Julio Candela Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico

Search for other papers by Julio Candela in
Current site
Google Scholar
PubMed
Close
, and
Jean-Marc Molines CNRS, Université Grenoble Alpes, LGGE (UMR5183), F-38041, Grenoble, France

Search for other papers by Jean-Marc Molines in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Velocity data from a mooring array deployed northeast of the Campeche Bank (CB) show the presence of subinertial, high-frequency (below 15 days) velocity fluctuations within the core of the northward flowing Loop Current. These fluctuations are associated with the presence of surface-intensified Loop Current frontal eddies (LCFEs), with cyclonic vorticity and diameter < 100 km. These eddies are well reproduced by a high-resolution numerical simulation of the Gulf of Mexico, and the model analysis suggests that they originate along and north of the CB, their main energy source being the mixed baroclinic–barotropic instability of the northward flow along the shelf break. There is no indication that these high-frequency LCFEs contribute to the LC eddy detachment in contrast to the low-frequency LCFEs (periods > 30 days) that have been linked to Caribbean eddies and the LC separation process. Model results show that wind variability associated with winter cold surges are responsible for the emergence of high-frequency LCFEs in a narrow band of periods (6–10 day) in the region of the CB. The dynamical link between the formation of these LCFEs and the wind variability is not direct: (i) the large-scale wind perturbations generate sea level anomalies on the CB as well as first baroclinic mode, coastally trapped waves in the western Gulf of Mexico; (ii) these waves propagate cyclonically along the coast; and (iii) the interaction of these anomalies with the Loop Current triggers cyclonic vorticity perturbations that grow in intensity as they propagate downstream and develop into cyclonic eddies when they flow north of the Yucatan shelf.

Corresponding author address: Julien Jouanno, LEGOS, 14 Ave. Edouard Belin, 31400 Toulouse, France. E-mail: julien.jouanno@ird.fr

Abstract

Velocity data from a mooring array deployed northeast of the Campeche Bank (CB) show the presence of subinertial, high-frequency (below 15 days) velocity fluctuations within the core of the northward flowing Loop Current. These fluctuations are associated with the presence of surface-intensified Loop Current frontal eddies (LCFEs), with cyclonic vorticity and diameter < 100 km. These eddies are well reproduced by a high-resolution numerical simulation of the Gulf of Mexico, and the model analysis suggests that they originate along and north of the CB, their main energy source being the mixed baroclinic–barotropic instability of the northward flow along the shelf break. There is no indication that these high-frequency LCFEs contribute to the LC eddy detachment in contrast to the low-frequency LCFEs (periods > 30 days) that have been linked to Caribbean eddies and the LC separation process. Model results show that wind variability associated with winter cold surges are responsible for the emergence of high-frequency LCFEs in a narrow band of periods (6–10 day) in the region of the CB. The dynamical link between the formation of these LCFEs and the wind variability is not direct: (i) the large-scale wind perturbations generate sea level anomalies on the CB as well as first baroclinic mode, coastally trapped waves in the western Gulf of Mexico; (ii) these waves propagate cyclonically along the coast; and (iii) the interaction of these anomalies with the Loop Current triggers cyclonic vorticity perturbations that grow in intensity as they propagate downstream and develop into cyclonic eddies when they flow north of the Yucatan shelf.

Corresponding author address: Julien Jouanno, LEGOS, 14 Ave. Edouard Belin, 31400 Toulouse, France. E-mail: julien.jouanno@ird.fr
Save
  • Andrade-Canto, F., J. Sheinbaum, and L. Zavala Sansón, 2013: A Lagrangian approach of the Loop Current eddy separation. Nonlinear Processes Geophys., 20, 8596, doi:10.5194/npg-20-85-2013.

    • Search Google Scholar
    • Export Citation
  • Athie, G., J. Candela, J. Ochoa, and J. Sheinbaum, 2012: Impact of Caribbean cyclones on the detachment of Loop Current anticyclones. J. Geophys. Res., 117, C03018, doi:10.1029/2011JC007090.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., M. J. Olascoaga, and G. J. Goni, 2008: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys. Res. Lett., 35, L12603, doi:10.1029/2008GL033957.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Candela, J., J. Sheinbaum, J. Ochoa, A. Badan, and R. Leben, 2002: The potential vorticity flux through the Yucatan Channel and the Loop Current in the Gulf of Mexico. Geophys. Res. Lett., 29, 2059, doi:10.1029/2002GL015587.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-L., and L.-Y. Oey, 2012: Why does the Loop Current tend to shed more eddies in summer and winter? Geophys. Res. Lett., 39, L05605, doi:10.1029/2011GL050773.

    • Search Google Scholar
    • Export Citation
  • Chérubin, L. M., Y. Morel, and E. P. Chassignet, 2006: Loop current ring shedding: The formation of cyclones and the effect of topography. J. Phys. Oceanogr., 36, 569591, doi:10.1175/JPO2871.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, P. Hamilton, R. Leben, M. Kennelly, and A. Lugo-Fernández, 2016: Gulf of Mexico Loop Current path variability. Dyn. Atmos. Oceans, doi:10.1016/j.dynatmoce.2015.12.003, in press.

    • Search Google Scholar
    • Export Citation
  • Dubranna, J., P. Brunius, J. M. Lopez, and J. Candela, 2011: Circulation over the continental shelf of the western and southwestern Gulf of Mexico. J. Geophys. Res., 116, C08009, doi:10.1029/2011JC007007.

    • Search Google Scholar
    • Export Citation
  • Dussin, R., B. Barnier, and L. Brodeau, 2014: The making of Drakkar forcing set DFS5. DRAKKAR/MyOcean Rep. 05-10-14, 29 pp. [Available online at https://www.drakkar-ocean.eu/forcing-the-ocean/the-making-of-the-drakkar-forcing-set-dfs5.]

  • Fratantoni, P. S., T. N. Lee, G. P. Podesta, and F. Muller-Karger, 1998: The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res., 103, 24 75924 779, doi:10.1029/98JC02147.

    • Search Google Scholar
    • Export Citation
  • Hallock, Z. R., W. J. Teague, and E. Jarosz, 2009: Subinertial slope-trapped waves in the northeastern Gulf of Mexico. J. Phys. Oceanogr., 39, 14751485, doi:10.1175/2009JPO3925.1.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and J. D. Thompson, 1982: The dynamics of the Loop Current and shed eddies in a numerical model of the Gulf of Mexico. Hydrodynamics of Semi-Enclosed Seas, J. C. J. Nihoul, Ed., Elsevier, 243–298.

  • Large, W. L., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Rep. TN-460+STR, 105 pp.

  • Leben, R. R., 2005: Altimeter-derived loop current metrics. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 181–201.

  • Leclair, M., and G. Madec, 2009: A conservative leapfrog time stepping method. Ocean Modell., 30, 8894, doi:10.1016/j.ocemod.2009.06.006.

    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., V. H. Kourafalou, Y. Morel, and A. Srinivasan, 2012: Simulating the dynamics and intensification of cyclonic Loop Current frontal eddies in the Gulf of Mexico. J. Geophys. Res., 117, C02034, doi:10.1029/2011JC007279.

    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., V. H. Kourafalou, R. Dussurget, and R. Lumpkin, 2014: Cyclonic activity in the eastern Gulf of Mexico: Characterization from along-track altimetry and in situ drifter trajectories. Prog. Oceanogr., 120, 120138, doi:10.1016/j.pocean.2013.08.002.

    • Search Google Scholar
    • Export Citation
  • Luther, M. E., and J. M. Bane, 1985: Mixed instabilities in the Gulf Stream over the continental slope. J. Phys. Oceanogr., 15, 323, doi:10.1175/1520-0485(1985)015<0003:MIITGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2016: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pole de Modélisation 27, 406 pp.

  • Masina, S., S. G. H. Philander, and A. B. G. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean. 2: Generation and energetics of the waves. J. Geophys. Res., 104, 29 63729 661, doi:10.1029/1999JC900226.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, doi:10.1175/2009JTECHO725.1.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., 2008: Loop Current and deep eddies. J. Phys. Oceanogr., 38, 14261449, doi:10.1175/2007JPO3818.1.

  • Pichevin, T., and D. Nof, 1997: The momentum imbalance paradox. Tellus, 49A, 298319, doi:10.1034/j.1600-0870.1997.t01-1-00009.x.

  • Reffray, G., R. Bourdalle-Badie, and C. Calone, 2015: Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO. Geosci. Model Dev., 8, 6986, doi:10.5194/gmd-8-69-2015.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, doi:10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., G. Gopalakrishnan, and B. D. Cornuelle, 2015: Cyclonic eddies in the Gulf of Mexico: Observations by underwater gliders and simulations by numerical model. J. Phys. Oceanogr., 45, 313326, doi:10.1175/JPO-D-14-0138.1.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., Jr., 2005: Cyclones and westward propagation in the shedding of anticyclonic rings from the Loop Current. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 241–261.

  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, doi:10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, doi:10.1175/JPO-D-15-0086.1.

    • Search Google Scholar
    • Export Citation
  • Sheinbaum, J., G. Athie, J. Candela, J. Ochoa, and A. Romero, 2016: Structure and variability of the Yucatan and Loop Currents along the slope and shelf break of the Yucatan Channel and Campeche Bank. Dyn. Atmos. Oceans, doi:10.1016/j.dynatmoce.2016.08.001, in press.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., N. G. Hoffmann, and R. R. Leben, 2010: A trigger mechanism for Loop Current ring separations. J. Phys. Oceanogr., 40, 900913, doi:10.1175/2009JPO4245.1.

    • Search Google Scholar
    • Export Citation
  • Sudre, J., C. Maes, and V. Garçon, 2013: On the global estimates of geostrophic and Ekman surface currents. Limnol. Oceanogr. Fluids Environ., 3, 120, doi:10.1215/21573689-2071927.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., and G. A. Maul, 1985: Cyclonic eddies in the eastern Gulf of Mexico. J. Phys. Oceanogr., 15, 105117, doi:10.1175/1520-0485(1985)015<0105:CEITEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, N., R. Leben, S. Anderson, J. Feeney, P. Coholan, and N. Sharma, 2009: Loop Current frontal eddies based on satellite remote-sensing and drifter data. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, OCS Study MMS 2009-023, 88 pp.

  • Zavala-Hidalgo, J., S. L. Morey, and J. J. O’Brien, 2003a: Cyclonic eddies northeast of the Campeche Bank from altimetry data. J. Phys. Oceanogr., 33, 623629, doi:10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., S. L. Morey, and J. J. O’Brien, 2003b: Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J. Geophys. Res., 108, 3389, doi:10.1029/2003JC001879.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1170 526 219
PDF Downloads 661 169 11