Reflection of Linear Internal Tides from Realistic Topography: The Tasman Continental Slope

Jody M. Klymak School of Earth and Ocean Sciences, and Department of Physics and Astronomy, University of Victoria, Victoria, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
,
Harper L. Simmons University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Harper L. Simmons in
Current site
Google Scholar
PubMed
Close
,
Dmitry Braznikov University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Dmitry Braznikov in
Current site
Google Scholar
PubMed
Close
,
Samuel Kelly Large Lakes Observatory, and Department of Physics, University of Minnesota Duluth, Duluth, Minnesota

Search for other papers by Samuel Kelly in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. MacKinnon Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jennifer A. MacKinnon in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Robert Pinkel Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Robert Pinkel in
Current site
Google Scholar
PubMed
Close
, and
Jonathan D. Nash College of Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon

Search for other papers by Jonathan D. Nash in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The reflection of a low-mode internal tide on the Tasman continental slope is investigated using simulations of realistic and simplified topographies. The slope is supercritical to the internal tide, which should predict a large fraction of the energy reflected. However, the response to the slope is complicated by a number of factors: the incoming beam is confined laterally, it impacts the slope at an angle, there is a roughly cylindrical rise directly offshore of the slope, and a leaky slope-mode wave is excited. These effects are isolated in simulations that simplify the topography. To separate the incident from the reflected signal, a response without the reflector is subtracted from the total response to arrive at a reflected signal. The real slope reflects approximately 65% of the mode-1 internal tide as mode 1, less than two-dimensional linear calculations predict, because of the three-dimensional concavity of the topography. It is also less than recent glider estimates, likely as a result of along-slope inhomogeneity. The inhomogeneity of the response comes from the Tasman Rise that diffracts the incoming tidal beam into two beams: one focused along beam and one diffracted to the north. Along-slope inhomogeneity is enhanced by a partially trapped, superinertial slope wave that propagates along the continental slope, locally removing energy from the deep-water internal tide and reradiating it into the deep water farther north. This wave is present even in a simplified, straight slope topography; its character can be predicted from linear resonance theory, and it represents up to 30% of the local energy budget.

Denotes Open Access content.

Corresponding author address: Jody Klymak, University of Victoria, 3800 Finnerty Road (Ring Road), Victoria BC V8P 5C2, Canada. E-mail: jklymak@uvic.ca

Abstract

The reflection of a low-mode internal tide on the Tasman continental slope is investigated using simulations of realistic and simplified topographies. The slope is supercritical to the internal tide, which should predict a large fraction of the energy reflected. However, the response to the slope is complicated by a number of factors: the incoming beam is confined laterally, it impacts the slope at an angle, there is a roughly cylindrical rise directly offshore of the slope, and a leaky slope-mode wave is excited. These effects are isolated in simulations that simplify the topography. To separate the incident from the reflected signal, a response without the reflector is subtracted from the total response to arrive at a reflected signal. The real slope reflects approximately 65% of the mode-1 internal tide as mode 1, less than two-dimensional linear calculations predict, because of the three-dimensional concavity of the topography. It is also less than recent glider estimates, likely as a result of along-slope inhomogeneity. The inhomogeneity of the response comes from the Tasman Rise that diffracts the incoming tidal beam into two beams: one focused along beam and one diffracted to the north. Along-slope inhomogeneity is enhanced by a partially trapped, superinertial slope wave that propagates along the continental slope, locally removing energy from the deep-water internal tide and reradiating it into the deep water farther north. This wave is present even in a simplified, straight slope topography; its character can be predicted from linear resonance theory, and it represents up to 30% of the local energy budget.

Denotes Open Access content.

Corresponding author address: Jody Klymak, University of Victoria, 3800 Finnerty Road (Ring Road), Victoria BC V8P 5C2, Canada. E-mail: jklymak@uvic.ca
Save
  • Baines, P. G., 2007: Internal tide generation by seamounts. Deep-Sea Res. I, 54, 14861508, doi:10.1016/j.dsr.2007.05.009.

  • Bonod, N., E. Popov, and M. Nevière, 2005: Differential theory of diffraction by finite cylindrical objects. J. Opt. Soc. Amer., 22A, 481490, doi:10.1364/JOSAA.22.000481.

    • Search Google Scholar
    • Export Citation
  • Boyer, T., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp.

  • Buijsman, M. C., and Coauthors, 2014: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850869, doi:10.1175/JPO-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Carter, G., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, doi:10.1175/2008JPO3860.1.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., and T. J. Sherwin, 1996: The extension of baroclinic coastal-trapped wave theory to superinertial frequencies. J. Phys. Oceanogr., 26, 23052315, doi:10.1175/1520-0485(1996)026<2305:TEOBCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970, doi:10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., J. M. Huthnance, and R. G. Williams, 2013: Internal wave reflection on shelf slopes with depth-varying stratification. J. Phys. Oceanogr., 43, 248258, doi:10.1175/JPO-D-11-0192.1.

    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, doi:10.1109/MCSE.2007.55.

  • Johnston, T. M. S., and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, doi:10.1029/2002JC001528.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, doi:10.1175/JPO-D-15-0038.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., 2011: Barotropic and baroclinic tidal energy. Ph.D. thesis, Stanford University, 149 pp.

  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, doi:10.1175/JPO-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, and J. D. Nash, 2013a: A coupled model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, doi:10.1175/JPO-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013b: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, doi:10.1002/grl.50872.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, doi:10.1016/j.ocemod.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. Alford, R. Pinkel, R. Lien, Y. Yang, and T. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, doi:10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. M. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, doi:10.1175/2008JPO3777.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and H.-L. Kuo, 1969: A reliable method for the numerical integration of a large class of ordinary and partial differential equations. Mon. Wea. Rev., 97, 732734, doi:10.1175/1520-0493(1969)097<0732:ARMFTN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. D. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, doi:10.1029/2007GL029749.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2013: Internal bores and breaking internal tides on the Oregon continental slope. J. Phys. Oceanogr., 43, 120139, doi:10.1175/JPO-D-12-030.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Mercier, M. J., N. B. Garnier, and T. Dauxois, 2008: Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids, 20, 086601, doi:10.1063/1.2963136.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., J. A. MacKinnon, R. Pinkel, A. F. Waterhouse, and J. Nash, 2016: Tidally driven processes leading to near-field turbulence in a channel at the crest of the Mendocino escarpment. J. Phys. Oceanogr., 46, 11371155, doi:10.1175/JPO-D-15-0021.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Rainville, L., T. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325, doi:10.1175/2009JPO4256.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Walt, S., S. C. Colbert, and G. Varoquaux, 2011: The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng., 13 (2), 2230, doi:10.1109/MCSE.2011.37.

    • Search Google Scholar
    • Export Citation
  • Whiteway, T., 2009: Australian bathymetry and topography grid, June 2009. Scale 1:5000000. Geoscience Australia, accessed 19 August 2016, doi:10.4225/25/53D99B6581B9A.

  • Zhao, Z., and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684, doi:10.1175/2009JPO3922.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 166 22
PDF Downloads 550 177 19