The Effect of Southern Ocean Surface Buoyancy Loss on the Deep-Ocean Circulation and Stratification

Malte F. Jansen Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Malte F. Jansen in
Current site
Google Scholar
PubMed
Close
and
Louis-Philippe Nadeau Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada

Search for other papers by Louis-Philippe Nadeau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The deep-ocean circulation and stratification have likely undergone major changes during past climates, which may have played an important role in the modulation of atmospheric CO2 concentrations. The mechanisms by which the deep-ocean circulation changed, however, are still poorly understood and represent a major challenge to the understanding of past and future climates. This study highlights the importance of the integrated buoyancy loss rate around Antarctica in modulating the abyssal circulation and stratification. Theoretical arguments and idealized numerical simulations suggest that enhanced buoyancy loss around Antarctica leads to a strong increase in the abyssal stratification, consistent with proxy observations for the last glacial maximum. Enhanced buoyancy loss moreover leads to a contraction of the middepth overturning cell and thus upward shift of North Atlantic Deep Water (NADW). The abyssal overturning cell initially expands to fill the void. However, if the buoyancy loss rate further increases, the abyssal cell also contracts, leaving a “dead zone” with vanishing meridional flow at middepth.

Corresponding author address: Malte F. Jansen, Dept. of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637. E-mail: mfj@uchicago.edu

Abstract

The deep-ocean circulation and stratification have likely undergone major changes during past climates, which may have played an important role in the modulation of atmospheric CO2 concentrations. The mechanisms by which the deep-ocean circulation changed, however, are still poorly understood and represent a major challenge to the understanding of past and future climates. This study highlights the importance of the integrated buoyancy loss rate around Antarctica in modulating the abyssal circulation and stratification. Theoretical arguments and idealized numerical simulations suggest that enhanced buoyancy loss around Antarctica leads to a strong increase in the abyssal stratification, consistent with proxy observations for the last glacial maximum. Enhanced buoyancy loss moreover leads to a contraction of the middepth overturning cell and thus upward shift of North Atlantic Deep Water (NADW). The abyssal overturning cell initially expands to fill the void. However, if the buoyancy loss rate further increases, the abyssal cell also contracts, leaving a “dead zone” with vanishing meridional flow at middepth.

Corresponding author address: Malte F. Jansen, Dept. of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637. E-mail: mfj@uchicago.edu
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., 2013: The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539561, doi:10.1002/palo.20046.

    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298, 17691773, doi:10.1126/science.1076252.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen-Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883, doi:10.1175/1520-0469(1983)040<1877:AFAEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., A. Ganopolski, D. Archer, and S. Rahmstorf, 2007: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography, 22, PA4202, doi:10.1029/2006PA001380.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean–climate models. J. Phys. Oceanogr., 14, 666673, doi:10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson, 2015: The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanography, 30, 10211039, doi:10.1002/2015PA002778.

    • Search Google Scholar
    • Export Citation
  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of C of in the western Atlantic Ocean. Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, doi:10.1016/j.ocemod.2011.02.005.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, doi:10.1073/pnas.1323922111.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, doi:10.1002/qj.49709640802.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, doi:10.1175/2008JPO3878.1.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., A. J. Adcroft, R. Hallberg, and I. M. Held, 2015: Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Modell., 92, 2841, doi:10.1016/j.ocemod.2015.05.007.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and K. Lorbacher, 2011: A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its application to the NCEP reanalysis data. Tellus, 63A, 338347, doi:10.1111/j.1600-0870.2011.00510.x.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., L. C. St. Laurent, J. B. Girton, and J. M. Toole, 2011: Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 41, 241246, doi:10.1175/2010JPO4557.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Lund, D. C., J. F. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, M. Nikurashin, and W. Peltier, 2015: Influence of enhanced abyssal diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr., 45, 25802597, doi:10.1175/JPO-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, doi:10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Search Google Scholar
    • Export Citation
  • Plumb, R., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, doi:10.1175/JPO-2669.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, J., and Coauthors, 2016: Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl. Acad. Sci. USA, 113, 514519, doi:10.1073/pnas.1511252113.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., and C. Le Quere, 1996: Oceanic carbon dioxide uptake in a model of century-scale global warming. Science, 274, 13461350, doi:10.1126/science.274.5291.1346.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2012: An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing. J. Phys. Oceanogr., 42, 12701287, doi:10.1175/JPO-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., Z. Liu, B. L. Otto-Bliesner, J. E. Kutzbach, and S. J. Vavrus, 2003: Southern ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys. Res. Lett., 30, 1096, doi:10.1029/2002GL015513.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., R. D. Muench, and C. H. Pease, 1990: Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res., 95, 94619479, doi:10.1029/JC095iC06p09461.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., R. Ferrari, and A. F. Thompson, 2014: On the importance of surface forcing in conceptual models of the deep ocean. J. Phys. Oceanogr., 44, 891899, doi:10.1175/JPO-D-13-0206.1.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405418, doi:10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, and A. L. Stewart, 2016: The influence of southern ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification. Geophys. Res. Lett., 43, 81248132, doi:10.1002/2016GL070058.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, doi:10.1175/JPO-D-13-0120.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., G. K. Vallis, and M. Nikurashin, 2015: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci., 8, 861864, doi:10.1038/ngeo2538.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2009: Overturning circulation in an eddy-resolving model: The effect of the pole-to-pole temperature gradient. J. Phys. Oceanogr., 39, 125142, doi:10.1175/2008JPO3991.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, doi:10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 780 300 31
PDF Downloads 624 228 26