A Theory of the Wind-Driven Beaufort Gyre Variability

Georgy E. Manucharyan Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Georgy E. Manucharyan in
Current site
Google Scholar
PubMed
Close
,
Michael A. Spall Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Michael A. Spall in
Current site
Google Scholar
PubMed
Close
, and
Andrew F. Thompson Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Andrew F. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m2 s−1, which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models.

Corresponding author address: Georgy E. Manucharyan, MC 131-24, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125. E-mail: gmanuch@caltech.edu

Abstract

The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m2 s−1, which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models.

Corresponding author address: Georgy E. Manucharyan, MC 131-24, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125. E-mail: gmanuch@caltech.edu
Save
  • Adcroft, A., and Coauthors, 2016: MITgcm user manual. Accessed 25 September 2015. [Available online at http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html.]

  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cole, S. T., M.-L. Timmermans, J. M. Toole, R. A. Krishfield, and F. T. Thwaites, 2014: Ekman veering, internal waves, and turbulence observed under Arctic Sea ice. J. Phys. Oceanogr., 44, 13061328, doi:10.1175/JPO-D-12-0191.1.

    • Search Google Scholar
    • Export Citation
  • Davis, P. E. D., C. Lique, and H. L. Johnson, 2014: On the link between Arctic Sea ice decline and the freshwater content of the Beaufort Gyre: Insights from a simple process model. J. Climate, 27, 81708184, doi:10.1175/JCLI-D-14-00090.1.

    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I., S. Kirillov, V. Ivanov, and R. Woodgate, 2008: Mesoscale Atlantic water eddy off the Laptev Sea continental slope carries the signature of upstream interaction. J. Geophys. Res., 113, C07005, doi:10.1029/2007JC004491.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. Mcwilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giles, K. A., S. W. Laxon, A. L. Ridout, D. J. Wingham, and S. Bacon, 2012: Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci., 5, 194197, doi:10.1038/ngeo1379.

    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans, 118, 39663977, doi:10.1002/jgrc.20294.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and Coauthors, 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global Planet. Change, 125, 1335, doi:10.1016/j.gloplacha.2014.11.013.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, doi:10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lique, C., H. L. Johnson, and P. E. D. Davis, 2015: On the interplay between the circulation in the surface and the intermediate layers of the Arctic Ocean. J. Phys. Oceanogr., 45, 13931409, doi:10.1175/JPO-D-14-0183.1.

    • Search Google Scholar
    • Export Citation
  • Manley, T., and K. Hunkins, 1985: Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90, 49114930, doi:10.1029/JC090iC03p04911.

  • Manucharyan, G. E., and M.-L. Timmermans, 2013: Generation and separation of mesoscale eddies from surface ocean fronts. J. Phys. Oceanogr., 43, 25452562, doi:10.1175/JPO-D-13-094.1.

    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and M. A. Spall, 2016: Wind-driven freshwater buildup and release in the Beaufort Gyre constrained by mesoscale eddies. Geophys. Res. Lett., 43, 273282, doi:10.1002/2015GL065957.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., 2015: Equilibration of the Arctic halocline by eddies. 20th Conf. on Atmospheric and Oceanic Fluid Dynamics, Minneapolis, MN, Amer. Meteor. Soc., 3.2. [Available online at https://ams.confex.com/ams/20Fluid/webprogram/Paper272340.html.]

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasihydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Jones, R. Karsten, and R. Wardle, 2002: Can eddies set ocean stratification? J. Phys. Oceanogr., 32, 2638, doi:10.1175/1520-0485(2002)032<0026:CESOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, T., M. Steele, and J. Zhang, 2014: Seasonality and long-term trend of Arctic Ocean surface stress in a model. J. Geophys. Res. Oceans, 119, 17231738, doi:10.1002/2013JC009425.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2012: Intensification of geostrophic currents in the Canada Basin, Arctic Ocean. J. Climate, 26, 31303138, doi:10.1175/JCLI-D-12-00289.1.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., P. L. Woodworth, C. W. Hughes, and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the southern annular mode. Geophys. Res. Lett., 31, L21305, doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., R. Bourke, and F. McLaughlin, 2002: The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys. Res. Lett., 29, 2100, doi:10.1029/2002GL015847.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, doi:10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Rabe, B., and Coauthors, 2014: Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophys. Res. Lett., 41, 961968, doi:10.1002/2013GL058121.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2013: On the circulation of Atlantic Water in the Arctic Ocean. J. Phys. Oceanogr., 43, 23522371, doi:10.1175/JPO-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2015: Thermally forced transients in the thermohaline circulation. J. Phys. Oceanogr., 45, 28202835, doi:10.1175/JPO-D-15-0101.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 16441668, doi:10.1175/2007JPO3829.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, K., and T. Haine, 2013: Wind-driven Arctic freshwater anomalies. Geophys. Res. Lett., 40, 61966201, doi:10.1002/2013GL058247.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Tabor, M., 1989: Linear stability analysis. Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley, 20–31.

  • Timmermans, M.-L., J. Toole, A. Proshutinsky, R. Krishfield, and A. Plueddemann, 2008: Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38, 133145, doi:10.1175/2007JPO3782.1.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., A. Proshutinsky, R. A. Krishfield, D. K. Perovich, J. A. Richter-Menge, T. P. Stanton, and J. M. Toole, 2011: Surface freshening in the Arctic Ocean’s Eurasian Basin: An apparent consequence of recent change in the wind-driven circulation. J. Geophys. Res., 116, C00D03, doi:10.1029/2011JC006975.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and Coauthors, 2014: Mechanisms of pacific summer water variability in the Arctic’s central Canada Basin. J. Geophys. Res. Oceans, 119, 75237548, doi:10.1002/2014JC010273.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: The transformed Eulerian mean. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, 304–313.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, E., 2011: Beaufort shelf break eddies and shelf-basin exchange of Pacific summer water in the western Arctic Ocean detected by satellite and modeling analyses. J. Geophys. Res., 116, C08034, doi:10.1029/2010JC006259.

    • Search Google Scholar
    • Export Citation
  • Watanabe, E., 2013: Linkages among halocline variability, shelf-basin interaction, and wind regimes in the Beaufort Sea demonstrated in pan-Arctic Ocean modeling framework. Ocean Modell., 71, 4353, doi:10.1016/j.ocemod.2012.12.010.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., K. Aagaard, J. H. Swift, K. K. Falkner, and W. M. Smethie Jr., 2005: Pacific ventilation of the Arctic Ocean’s lower halocline by upwelling and diapycnal mixing over the continental margin. Geophys. Res. Lett., 32, L18609, doi:10.1029/2005GL023999.

    • Search Google Scholar
    • Export Citation
  • Yang, J., 2009: Seasonal and interannual variability of downwelling in the Beaufort Sea. J. Geophys. Res., 114, C00A14, doi:10.1029/2008JC005084.

    • Search Google Scholar
    • Export Citation
  • Yang, J., A. Proshutinsky, and X. Lin, 2016: Dynamics of an idealized Beaufort Gyre: 1. The effect of a small beta and lack of western boundaries. J. Geophys. Res. Oceans, 121, 12491261, doi:10.1002/2015JC011296.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, A. Proshutinsky, and J. Toole, 2014: Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 88008817, doi:10.1002/2014JC010488.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 726 245 29
PDF Downloads 595 182 18