Control and Stabilization of the Gulf Stream by Oceanic Current Interaction with the Atmosphere

Lionel Renault Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Lionel Renault in
Current site
Google Scholar
PubMed
Close
,
M. Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California, and Laboratoire d’Ocanographie Physique et Spatiale, University of Brest, CNRS, IRD, Ifremer, IUEM, Brest, France

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
,
Jonathan Gula Laboratoire d’Ocanographie Physique et Spatiale, University of Brest, CNRS, IRD, Ifremer, IUEM, Brest, France

Search for other papers by Jonathan Gula in
Current site
Google Scholar
PubMed
Close
,
Sebastien Masson Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Sebastien Masson in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Gulf Stream (GS) is known to have a strong influence on climate, for example, by transporting heat from the tropics to higher latitudes. Although the GS transport intensity presents a clear interannual variability, satellite observations reveal its mean path is stable. Numerical models can simulate some characteristics of the mean GS path, but persistent biases keep the GS separation and postseparation unstable and therefore unrealistic. This study investigates how the integration of ocean surface currents into the ocean–atmosphere coupling interface of numerical models impacts the GS. The authors show for the first time that the current feedback, through its eddy killing effect, stabilizes the GS separation and postseparation, resolving long-lasting biases in modeled GS path, at least for the Regional Oceanic Modeling System (ROMS). This key process should therefore be taken into account in oceanic numerical models. Using a set of oceanic and atmospheric coupled and uncoupled simulations, this study shows that the current feedback, by modulating the energy transfer from the atmosphere to the ocean, has two main effects on the ocean. On one hand, by reducing the mean surface stress and thus weakening the mean geostrophic wind work by 30%, the current feedback slows down the whole North Atlantic oceanic gyre, making the GS narrower and its transport weaker. Yet, on the other hand, the current feedback acts as an oceanic eddy killer, reducing the surface eddy kinetic energy by 27%. By inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies.

Denotes Open Access content.

Corresponding author address: Lionel Renault, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: lrenault@atmos.ucla.edu

Abstract

The Gulf Stream (GS) is known to have a strong influence on climate, for example, by transporting heat from the tropics to higher latitudes. Although the GS transport intensity presents a clear interannual variability, satellite observations reveal its mean path is stable. Numerical models can simulate some characteristics of the mean GS path, but persistent biases keep the GS separation and postseparation unstable and therefore unrealistic. This study investigates how the integration of ocean surface currents into the ocean–atmosphere coupling interface of numerical models impacts the GS. The authors show for the first time that the current feedback, through its eddy killing effect, stabilizes the GS separation and postseparation, resolving long-lasting biases in modeled GS path, at least for the Regional Oceanic Modeling System (ROMS). This key process should therefore be taken into account in oceanic numerical models. Using a set of oceanic and atmospheric coupled and uncoupled simulations, this study shows that the current feedback, by modulating the energy transfer from the atmosphere to the ocean, has two main effects on the ocean. On one hand, by reducing the mean surface stress and thus weakening the mean geostrophic wind work by 30%, the current feedback slows down the whole North Atlantic oceanic gyre, making the GS narrower and its transport weaker. Yet, on the other hand, the current feedback acts as an oceanic eddy killer, reducing the surface eddy kinetic energy by 27%. By inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies.

Denotes Open Access content.

Corresponding author address: Lionel Renault, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: lrenault@atmos.ucla.edu
Save
  • Beckmann, A., and D. B. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 1736–1753, doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., and D. C. Fillon, 2012: Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens., 33, 1729–1754, doi:10.1080/01431161.2011.600348.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., M. W. Hecht, and R. D. Smith, 2007: Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system. Ocean Modell., 16, 141–159, doi:10.1016/j.ocemod.2006.08.005.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and D. P. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, 39–61, doi:10.1029/177GM05.

  • Chelton, D. B., and M. G. Schlax, 2003: The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets. J. Atmos. Oceanic Technol., 20, 1276–1302, doi:10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495–517, doi:10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-104606, 51 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Cornillon, P., and K. Park, 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575–578, doi:10.1029/2000GL011487.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935–938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and L. Thompson, 2006: Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys. Res. Lett., 33, L09604, doi:10.1029/2006GL025784.

  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 49–50, 1–21, doi:10.1016/j.ocemod.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • de Verdière, C. A., and M. Ollitrault, 2016: A direct determination of the World Ocean barotropic circulation. J. Phys. Oceanogr., 46, 255–273, doi:10.1175/JPO-D-15-0046.1.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 1653–1667, doi:10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 477–19 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202–211, doi:10.1175/JPO2842.1.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, doi:10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690–715, doi:10.1175/JPO-D-14-0154.1.

    • Search Google Scholar
    • Export Citation
  • Hamilton, P., J. C. Larsen, K. D. Leaman, T. N. Lee, and E. Waddell, 2005: Transports through the Straits of Florida. J. Phys. Oceanogr., 35, 308–322, doi:10.1175/JPO-2688.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520–533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082, doi:10.1175/2009JCLI2629.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, doi:10.1029/2007JC004371.

  • Jousse, A., A. Hall, F. Sun, and J. Teixeira, 2016: Causes of WRF surface energy fluxes biases in a stratocumulus region. Climate Dyn., 46, 571–584, doi:10.1007/s00382-015-2599-9.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–404, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • LemariĂ©, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 57–79, doi:10.1016/j.ocemod.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2013: The world ocean database. Data Sci. J., 12, WDS229–WDS234, doi:10.2481/dsj.WDS-041.

  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344–2360, doi:10.1175/JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 1–20, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, doi:10.1029/2012GL052933.

  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165–182, doi:10.1029/RG023i002p00165.

  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. C. de Verdière, 2014: The ocean general circulation near 1000-m depth. J. Phys. Oceanogr., 44, 389–409, doi:10.1175/JPO-D-13-030.1.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833–838, doi:10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, H., D. Lee, W.-P. Jeon, S. Hahn, J. Kim, J. Kim, J. Choi, and H. Choi, 2006: Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device. J. Fluid Mech., 563, 389–414, doi:10.1017/S0022112006001364.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., B. Barnier, W. K. Dewar, and J. J. O’Brien, 2004: Dynamical response of the oceanic eddy field to the North Atlantic Oscillation: A model–data comparison. J. Phys. Oceanogr., 34, 2615–2629, doi:10.1175/JPO2618.1.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., E. D. Skyllingstad, R. M. Samelson, and P. L. Barbour, 2007: Numerical simulation of air–sea coupling during coastal upwelling. J. Phys. Oceanogr., 37, 2081–2093, doi:10.1175/JPO3104.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., and Coauthors, 2012: Upwelling response to atmospheric coastal jets off central Chile: A modeling study of the October 2000 event. J. Geophys. Res., 117, C02030, doi:10.1029/2011JC007446.

  • Renault, L., A. Hall, and J. C. McWilliams, 2016a: Orographic shaping of US West Coast wind profiles during the upwelling season. Climate Dyn., 46, 273–289, doi:10.1007/s00382-015-2583-4.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. LemariĂ©, D. Chelton, S. Illig, and A. Hall, 2016b: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 1685–1704, doi:10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., P. Niiler, and H. Valdimarsson, 2003: North Atlantic Ocean surface currents. J. Geophys. Res., 108, 3002, doi:10.1029/2001JC001020.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 2379–2413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., and W. H. F. Smith, 1997: Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res., 102, 10 039–10 054, doi:10.1029/96JB03223.

  • Schoonover, J., and Coauthors, 2016: North Atlantic barotropic vorticity balances in numerical models. J. Phys. Oceanogr., 46, 289–303, doi:10.1175/JPO-D-15-0133.1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res. I, 56, 295–304, doi:10.1016/j.dsr.2008.09.010.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439–459, doi:10.1175/JPO-D-15-0086.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., 2015: An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. Ocean Modell., 91, 38–69, doi:10.1016/j.ocemod.2015.03.006.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 8985–9000, doi:10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Small, R., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274–319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part I: Entrainment and recirculation. J. Phys. Oceanogr., 26, 2152–2168, doi:10.1175/1520-0485(1996)026<2152:DOTGSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 3785–3801, doi:10.1175/JCLI4234.1.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1975: Ocean Circulation Physics. Academic Press, 246 pp.

  • Talandier, C., and Coauthors, 2014: Improvements of simulated western North Atlantic current system and impacts on the AMOC. Ocean Modell., 76, 1–19, doi:10.1016/j.ocemod.2013.12.007.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373–388, doi:10.5194/gmd-6-373-2013.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., H. Sasaki, and J. Marotzke, 2007: Wind-generated power input to the deep ocean: An estimate using a 1/10° general circulation model. J. Phys. Oceanogr., 37, 657–672, doi:10.1175/JPO3001.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332–2340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1773 593 32
PDF Downloads 1185 298 25